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Abstract. We introduce a methodology for the high-level specification and
decentralized coordination of temporal interdependencies among multimedia
document objects. Such methodology encompasses a three-step process
comprising (i) the design of multimedia presentation scenes by means of a
fuzzy descriptive plan; (ii) the parsing of such layout to classify the multimedia
entities that compose the scenes and to check the consistency of temporal
relationships among them; and (iii) the generation of event-driven time and
action managers as distributed mechanisms for the orchestration of the
elements presentation. This approach centers around a novel multimedia
synchronization model based on fuzzy sets and software components concepts.

1. Introduction

The representation, specification, and orchestration of temporal interdependencies
among multimedia objects comprehend a basal, yet complex, task to be properly
addressed in the construction of any multimedia system [Blakowski 1996, Little 1990].
Such activity is referred to as intermedia temporal synchronization since it takes into
account the various kinds of relationships between time-dependent (continuous) as well
as time-independent (discrete) media objects. In such realm, there are primarily two
complementary subject issues to be undertaken. The first concerns on how to indicate
(represent and specify), step by step, the sequential or concurrent ordering of the various
media contents presentation. This is known as a multimedia synchronization model. The
second issue copes with how to guarantee the correct exhibition (orchestration) of the
already specified relations. This is the role of multimedia synchronization mechanisms.

To provide more flexibility in the portrayal of multimedia presentation
scenarios, we focus here on a new methodology approaching a high-level, designer-
oriented, descriptive specification of intermedia temporal associations. In this scheme,
both of the above issues are contemplated: The media objects’ interdependencies are
portrayed in a fuzzy synchronization model wherein fuzzy rules and constraints [Pedrycz
1998] behave as basic synchronization mechanisms that are directly derived from the
authored scenario characterization. The idea is to capture the interactions between
multimedia document (MMDoc) elements in a more amenable way from the designer
perspective as well as to give space for the representation and handling of inaccurate
relationships and unpredictable situations. Such aspects are very appealing for a range
of circumstances, mainly when one wishes to take advantage of the soft character
behind most multimedia synchronization requirements–as for pre-elaborated multimedia
presentation scenarios–, or when it is desirable to promote support for user interactivity.
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Such methodology (named as MuSCoF1) is oriented towards the pervasive
appliance of software components [Hopkins 2000], as they comprehend a conceptual
abstraction that seems to be more suitable for the modeling of multimedia document
elements. Behind this decision, the purpose is twofold: (i) to embed in the same
container all structural and logical information related to a particular media object (such
as the various presentation plans that may be available for distinct environments); and
(ii ) to decentralize the coordination activities necessary for the proper arrangement of
the (possible numerous) elements presentation. MuSCoF shall be implemented in a
proper multimedia environment, conceived to assist the designer in all authoring phases
(scenarios specification, verification, implementation, and deployment).

In the sequence, we acquaint the reader with the fundamental concepts
underlying fuzzy systems, software components and the multimedia synchronization
problem (Section 2). Further, the proposed methodology is described, following a top-
down vision. This is done in Section 3, where we focus on the fuzzy synchronization
and multimedia component models. Section 4 is devoted to an illustrative example,
whereas in Section 5 we situate and assess our proposal in light of related work. Finally,
some concluding and future work remarks are presented.

2. Background

For the sake of clarity, this section concentrates on some basic notions, concepts, and
requirements that are handled further in the methodology specification.

2.1. Fuzzy Systems

The basic concept underlying fuzzy systems theory is that of fuzzy set [Pedrycz 1998].
Fuzzy sets involve capturing, representing, and working with linguistic notions–objects
with unclear boundaries–and are very apropos to be employed in those circumstances
where impreciseness, unpredictability, vagueness, approximation, soft gradation and
flexibility are in concern. A fuzzy set has been defined as a collection of objects with
membership values between 0 (complete exclusion) and 1 (complete agreement), where
these values express the degrees to which each object is compatible with the properties
or features distinctive to the collection. A fuzzy set is a generalization of the concept of
a set and can be defined in either finite or infinite universes. Formally, a fuzzy set A is
characterized by a membership function (µA) mapping the elements of a domain of
discourse X to the unit interval [0,1]. That is, µA: X → [0,1]. As for crisp sets, fuzzy sets
can be compared or aggregated by means of special types of operators. Amongst them,
it is worthy to quote the classes of fuzzy intersection and union operators, known as
triangular norms (t-norms) and co-norms (s-norms). Examples of such operators are the
minimum (min) and maximum (max) [Pedrycz 1998].

Beside the above definition lies another concept, that of a linguistic variable. In
contrast to a variable with numbered values, a linguistic variable can be regarded as one
that may assume fuzzy values consisting of words or sentences in a language. These
fuzzy values which are used to model imprecise quantities are known as fuzzy numbers,
each one associated with a characteristic membership function mapping the real line ℜ
to the unit interval. Typically, a linguistic variable is characterized by a name ∆ (e.g.,
temporal duration) and a finite set of primary linguistic terms T(∆) (e.g., T(∆) =
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{ beginning, middle, finish}) , where each labeled term relates to a particular fuzzy set
(with a proper membership function) over a defined partition of the variable’s
associated universe of discourse (Figure 1a). As well, a linguistic variable may be
associated with a set of modifiers, such as hedges H (e.g., very, more or less, quite,
almost, few), the connectives and and or, and the negation not. Such modifiers alter the
semantics of the variable’s linguistic terms and to provide for a means of representing
and computing composite terms (e.g., very high, not low and not very high). For this
purpose, modifiers are expressed as configurations of elementary membership function
operators, such as those depicted in Figure 1b (dilation, concentration, and
fuzzification). Table 1 brings expressions for some modifiers.

Figure 1. (a) A linguistic variable ∆ and its partitioned terms. (b) Some
elementary operators acting upon a Gaussian membership function.

Modifier/Operator Expression
concentration (Con_L(x)) Lp(x), p >1

dilation (Dil_L(x)) Lr(x), r<1
fuzzification (Fuzz_L(x)) [L(x)/2]  ½ if L(x) ≤ 0.5

1 – [(1 – L(x))/2]½ otherwise
very L Con_L(x), p =2
plus L Con_L(x), p =1.5

minus L Dil_L(x), r =0.75
highly L plus very L or minus very very L
much L Fuzz_L(x)

more or less L Dil_L(x), r = 0.5
not L and not very M [1-L(x)] t [1-Con_M(x)]

very L or M Con_L(x) s M(x)

Table 1. Some linguistic modifiers and their calculus. L and M stand for
linguistic terms and t and s refer to t- and s-norms.

Linguistic variables constitute an expressive way of capturing the meaning of a
concept or representing knowledge about real-life facts, such as the temporal duration
of A is on beginning. Compound propositions (e.g., the temporal duration of A is on
beginning and the temporal duration of B is quite finishing) may be constructed through
conjunctions (t-norms) and/or disjunctions (s-norms) of other propositions. Conditioned
fuzzy propositions, known as fuzzy rules, generally comprehend two distinct parts, an
antecedent and a consequent (e.g., IF the temporal duration of A is on beginning THEN
the temporal duration of B is finishing) and may be chained or fired together via
inference mechanisms. Fuzzy rules are very suitable for grabbing the causality between
events and actions. By other means, linguistic variables may be logically connected by



means of fuzzy constraints if one wishes to declare vague or partial (not stringent)
relationships (dependencies or coupling) among the concepts they represent. Sets of
fuzzy rules and fuzzy constraints are typically employed for high-level modeling and
controlling purposes, as they properly capture the subjective aspects behind the
expertise of a domain specialist (such as a multimedia presentation designer).

Albeit this range of functionalities, yet few reported works have tried to explore
the applicability of fuzzy systems theory into multimedia context. This is particularly
noticeable in the multimedia synchronization arena, where the relations among media
elements are typically set through specification models that, most of the times, provide
deficient support degree for modeling flexibility and uncertainty issues. In Section 5, we
comment on other approaches concerning media synchronization with fuzzy aspects.

2.2. Software Components

Components are the smallest self-managing, independent, and useful parts of a system
that works in multiple environments [Lewandowski 1998]. Hopkins (2000) defines a
software component as “a physical packaging of executable software with a well-
defined and published interface that can be delivered as a unit and that can be
composed, unchanged, with others to build large loosely coupled systems.” Components
may contain multiple distributed or local objects, and they are often used to centralize
code related to a specific functionality. The flexibility of granularity is also attractive:
Components can be as small as required to be specialized in a particular capability, or as
large as required to encapsulate all the logic of a particular subsystem without reliance
on other components. There are two engineering drivers in the development of a
component-based system: (i) the ability to reuse existing designs and implementations
and (ii ) the easiness of maintainability.

One of the most important distinguishing factors in component-based
development is the separation of the interface and the implementation. Since
components are designed for use in a variety of systems, their interface must identify
clearly both the service they subsume and the means of invoking them (this is known as
the component’s service contract). By other means, a component may or may not be
implemented using OO tools and languages. Components communicate through the
generation of events following the producer-consumer style. In this sense, events can be
viewed as synchronization objects that allow one thread of execution to notify others
that something has happened. Using this model, an event can announce to a component
that it should perform a certain action. Listening for events provides a more robust
framework for interaction between objects than a model that forces their coupled
interplay. All these aspects justify the employment of software components as an
adequate paradigm for the modeling of multimedia presentation elements.

2.3. Multimedia Synchronization Requirements

It is possible to characterize specific interdependencies that occur in a multimedia
scenario and identify coordination mechanisms to manage them. Among them, we can
highlight the temporal interdependencies [Blakowski 1996, Pazandak 1994, Wahl
1994], which encompass those situations in which it is necessary to establish an
execution order for the multimedia objects presentation, somehow resembling a
scheduling process. Such objects encapsulate single or composite media and are
interrelated by means of logical presentation plans. Once a multimedia scenario has
been specified, using some formal or informal notation, its temporal synchronization



requirements must be represented in a format that is automatically processable by the
subsequent steps. Such format is known as the synchronization specification of the
multimedia scenario and follows the formalism expressed in a multimedia
synchronization model. The fulfillment of the requisites stated by the synchronization
specification is achieved by means of synchronization mechanisms, which pursue the
correct orchestration of the elements real-time rendering.

With respect to how temporal elementary units and temporal dependencies are
expressed, multimedia scenario models can be classified into several categories
[Blakowski 1996, Kwon 1999, Wahl 1994]: sync-point models, timeline models,
hierarchical models, causality models, interval-based models, and constraint-based
models. In sync-point models, synchronization is realized by logically connecting
together reference points (defined in a unidimensional time space) [Steinmetz 1990] that
have been inserted within the media objects. Timeline models [Gibbs 1991] are also
instant-based models, but now all multimedia objects are related only with the same
time axis (a global timeline) and are independent to each other. In hierarchical models
[Karmouch 1996], a multimedia presentation may be regarded as a tree, whose leaves
are media objects and whose edges and internal nodes are composition operators.
Although such models have the advantage of being very simple and intuitive, their
major drawback is that it is impossible to specify relative temporal relationships among
the playout of the various objects–this may turn to be very awkward in case of changes
in the objects’ playout or when not all presentation time spans are known in advance.
Causality, interval- and constraint-based models attempt to overcome such deficiency.
The first [Pazandak 1994] involves synchronizing begin/end points via specific signals
(system, application, or user-defined events), following a “cause-effect” semantics (the
relative temporal ordering is an implicit result of this process). In interval-based models,
each object has an associated interval representing the time required for its presentation,
and the synchronization requirements are specified by correlating such intervals through
a set of basic (Allen’s) relations [Huang 1998, Wahl 1994]. In constraint-based models
[Karmouch 1996, Kwon 1999], synchronization aspects are described through sets of
constraints of the form event1 {<, =, >} event2 + delay, where eventi refers to instant
events (start/end time), and delay is a number (zero or beyond) of time steps. As it is
discussed in the next sections, the MuSCoF synchronization model may be regarded as a
hybrid of most of the aforementioned approaches.

3. Methodology

MuSCoF encompasses a three-step process (Figure 2) and is based on two interdependent
models (fuzzy synchronization model and multimedia component model). The steps
include (i) the user input layout of the multimedia presentation scenes by means of a
fuzzy script plan (synchronization specification); (ii ) the parsing of such editing sketch
for the classification of the multimedia entities that compose the scenes and for the
consistency checking of the temporal relationships among them; and (iii ) the generation
of temporal and action managers (synchronization mechanisms) associated to each
multimedia entity. Such models and steps are discussed in the next subsections.



Figure 2. MuSCoF methodology.

3.1. Fuzzy Multimedia Synchronization Model

It is many times very difficult to completely describe the activities underlying a
MMDoc scenario. This happens because the temporal/spatial relationships among the
media elements may sometimes not adjust to an accurate specification of well-defined
interdependencies. Such modeling imprecision implies, as a positive side effect, more
flexibility to multimedia designers as they can focus on the high-level description of the
scenes, without having to deal with peculiarities such as exact presentation times.
Employing fuzzy sets theory, interdependencies in multimedia specifications can
assume a more manageable perspective, in a manner more closely related to the
subjective human reasoning, improving both the understandability and the feasibility of
the interacting rules that identify the whole scheduling process.

In active MMDocs, temporal objects are the model elements upon which
relations are specified. Pazandak and Srivastava (1994) enumerate three classes of
temporal objects: the media objects (in MuSCoF they appear encapsulated in multimedia
components–MMComps), events (referring to the endpoints of media objects as well as
user- or application-defined signals), and timepoints (instants with no duration). Each of
these elements should have their semantics fuzzified in our model, giving rise to fuzzy
temporal objects. Some media objects have an implied duration (audio/video sequences
are rendered at the rate at which they were captured), whereas others (static media such
as image and text) are assigned to arbitrary temporal values according to the designer’s
intent. In a manner or the other, the majority of the temporal models only accommodate
media objects with known or predictable duration, giving no treatment to the
representation of uncertainty. Conversely, in MuSCoF we define two types of media
duration associated to a MMComp that may have their values fuzzified: one relative to
its presentation time ∆p (temporal length since a beginning event in instant tb until an end
event in instant tf) and the other relative to its time of liveness ∆l (temporal length it is
capable to affect the presentation of other components). Thus, a designer may capture
temporal uncertainties through the use of fuzzy numbers, such as “about 5min” or
“below 10s”, and vague relations between temporal objects may be represented through
the employment of both types of fuzzy duration. The membership functions associated
to such fuzzy numbers may, as well, be altered via fuzzy modifiers, such as those
illustrated in Table 1. Thus, assuming that “about 10s” is characterized by a triangular-
shape fuzzy number Z(m,a,b), then “almost about 10s”, V(n,c,d), is possible to be
grabbed by the following computation, whose result is shown in Figure 3.

Fuzzy MM
Model

MM Component
Model

Scenario Specification through a Descriptive Plan

Parsing/Consistency Checking

Generation of MM Mechanisms (Temporal and Action Managers)



“almost about 10s” = V(n,c,d)= Dil_L(Z(m,a,b)) = Z(m,a,b)0.5

Figure 3. Result of the calculus of a temporal triangular fuzzy number (normalized).

It is also possible to place fuzzy arithmetic operations between fuzzy temporal
objects to express inexact or flexible constraint relations between them. Thus, in
MuSCoF, we define a fuzzy temporal constraint as a constraint in which at least one of
its elements is quantified by a fuzzy value. This may be described as event1 {<, =, >}
event2 {⊕, ,, ⊗} delay, where ⊕, ,, ⊗ refer to fuzzy addition, subtraction, and
multiplication [Pedrycz 1998], and eventi and delay represent fuzzy events and fuzzy
timepoints. In this context, it is feasible to ascertain that “the media object O1 should
startup roughly two seconds after the end of media object O2 presentation”: “startup”
and “end” are fuzzy events and “roughly two seconds” is a fuzzy timepoint.

To give more flexibility to the specification of temporal interdependencies in a
multimedia scenario, the duration ∆p may, otherwise, be represented as a linguistic
variable defined over a temporal scale. In MuSCoF model, we have taken such fact into
account to represent presentation activities and phases. The designer is the one who
stipulates the amount, the meaning, and the format of the membership functions
associated to the linguistic terms ranging over each ∆p partition (so, the ∆p of each media
object can be customized). The linguistic terms allow for the definition of time parcels
representing possible synchronization points between two media presentations. In
Figure 1, the duration ∆p is associated with three linguistic terms (beginning, middle,
finish), whose membership functions overlap, each representing a possible phase of
rendering. In this case, P1 and P2 are two fuzzy synchronization points, each representing
a subset of values delimited by the endpoints Pia and Pib given by

where sup and min refer to the supremum and infimum operations and

are the α-cuts2 [Pedrycz 1998] of middle and finish in relation to the universe of
discourse defined by ∆p and to the threshold levels defined by τ1 and τ2, respectively. To
directly specify a temporal interdependency between a pair of media objects, say <O1,
O2>, the designer establishes a threshold value explicitly indicating the minimal and
maximal values delimiting the fuzzy synchronization point for assuming that “O1 has
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fired a fuzzy synchronization event in relation to O2”. This strategy introduces
uncertainty in the occurrence of a synchronization event (which is very apropos to
capture the existence of unexpected holdups in the rendering application) and allows for
the “relative firing” between different pairs of objects. Therefore, <<O1, finishing,
almost, τ1> → <O2, start, state2>> (e.g., O2 will start when O1 is "almost finishing") and
<<O1, beginning, very, τ1’> → <O3, start, state3>> (e.g., O3 will commence after the
“very beginning” of O1) should incur distinct synchronization points/events for the same
media object O1. Thus, it is possible to introduce and represent fuzzy causality between
the activities realized by the media objects. Pazandak and Srivastava’s temporal model
[Pazandak 1994] also supports the notion of causality, albeit they do not envisage
situations where the “cause-effect” may be fuzzified, as proposed here. For this purpose,
we have made use of fuzzy conditional rules of the type

IF FUZZY TEMPORAL CONDITION THEN ACTION/DECISION,
where the temporal condition may be a fuzzy compound proposition and may be
relative to each of the above three temporal objects, for expressing the “cause-effect”
relations among media objects. In this sense, the triggering of a fuzzy associative rule
may bring about the triggering of several other events (and rules, as consequence). The
ordering of events occurrence, thus, is made part explicit (e.g., “startup of O1 is about 5
min”) and part implicit (unpredictable) to the execution of the presentation script (e.g.,
“IF some event occurs, like an user input or a media object has achieved a certain
presentation phase, THEN some actions may be performed”). Therefore, both the whole
scenario presentation duration as well as what should be presented along the time may
not be once entirely deterministic and depends on the peculiarities of each execution.

According to Figure 2, the first step of the methodology is the user’s scenario
specification through a descriptive plan, which is typically done through the
employment of a high-level script [Blakowski 1996] with some simple “command-like”
directives. Elements of such script are activities and subscripts (each one relating to a
scene/frame of execution). The idea is to provide for the user a set of basic temporal
primitives (each relating to one of the above types of fuzzy relationships) he/she can
overly employ and combine to depict the scenes and interactions behind a MMDoc
execution. The script may be supported by a full programming or declarative language
[Rutledge 1999] and should have its execution interpreted by the multimedia
presentation tool. In MuSCoF, each high-level script is associated to an abstract
multimedia component, which encapsulates, through a nesting hierarchy, all the
scenario elements. In the same manner, a subscript contains media elements that are
temporal correlated in a given fragment/scene of the exhibition. Table 2 brings the
syntax and meaning of MuSCoF temporal primitives, as well as some logical, layout, and
additional operators. The cond operator (which may be extended to encompass other,
not yet contemplated, cases) expresses extra requirements regarding the MMComps’
state that must be “on-the-fly” verified before their exhibition. Such operators should
come adjacent to the MMComps definition or to the specification of the fuzzy
rules/constraints. Hence, it is possible to represent such exceptional cases where (i) “two
MMComps should have their presentation resumed together if one detects in runtime
that the other is also being rendered” [Antonacci 2000]; or (ii ) “a MMComp should
startup after a second one but ought not be rendered together with a third one”; or (iii )
“a MMComp should not be presented if any element is in an ‘out-of-function’ state.”
For case (i), the compound directive could be fuzzyCausal(<A, finish, [H],τ1> → <B,
stop, stateB>) cond(<playing, A> AND <playing, B>), whereas for case (ii ) one could



specify that fuzzyCausal(<C, finish, [H], τ1> → <A, start, stateA> cond(NOT<playing,
B>). In Section 4, some of these primitives are applied for the description of a scenario.

Primitive Syntax Primitive Semantics
script(MM) Implies the beginning of a (sub)script. MM is an abstract container
sensor(sens) sens is a multimedia sensor

mmcomp(MM) MM is a multimedia component
contains(MM0, MM1) MM1 is encapsulated in MM0

peer(MM0, MM1) MM0 and MM1 are in the same container (are temporal
collocated)

Lo
gi

ca
l /

 la
yo

ut

cycle(MM, gen) Indicates that MM should have its presentation iteratively
presented for gen cycles

crispTimePoint(CT) CT is a timepoint with crisp (non-fuzzy) value
fuzzyTimePoint(FT, pert) FT is a fuzzy timepoint with membership function pert

fuzzyEvent(e, t, MM,
action)

e is an endpoint event related to the action action of MM (t
indicates whether it is a begin or end event)

fuzzyLingVar (V, u, {p}) V is a fuzzy linguistic variable with universe of discourse u and
has one or more fuzzy timepoints (p) as labels for linguistic terms

crispPresDur (MM, ps, ct) MM has a presentation object ps with crisp duration ct
fuzzyPresDur (MM, ps, ft) MM has a presentation object ps with fuzzy duration ft
fuzzyPresDur (MM, ps,V) MM has a presentation object ps with duration (V) fuzzified

crispLiveDur (MM, t) MM has a crisp liveness duration (t is a crisp timepoint)
fuzzyLiveDur (MM, t) MM has a fuzzy liveness duration (t is a fuzzy timepoint)

fuzzyCausal
(<MM0, p, [H], τ> →
<MM1, action, state> )

This should be read as “IF MM0 reaches the synchronization
point delimited by the ling. term p, the set of zero or more
modifiers H and threshold τ, THEN perform action action of
MM1 and changes its state to state”

fuzzyConstr(e1, e2, d, o) Indicates a fuzzy temporal constraint where e1 and e2 are fuzzy
events, d is a fuzzy delay and o is a fuzzy operator

T
em

po
ra

l

sensorSignal(sens,
<MM,action,st>)

Denotes that the action manager relative to action action of MM
should be notified by sensor sens whenever it is active

cond(<MM1,st1>
AND/OR/NOT
<MM2,st2>)

This primitive indicates other kinds of presentation restrictions
that must be satisfied every time some MMComps are going to be
presented (MM1 and MM2 are two objects in states st1 and st2,
respectively, and AND/NOT/OR are logical connectives

O
th

er

at_cycle(MM, gen) This specifies an additional refinement to a temporal primitive, by
indicating the cycle gen at which the fuzzy causal rule or
constraint ought to be handled

Table 2. MuSCoF primitives for MMDoc temporal specification.

Once a scenario has been created, there should be some mechanism to verify the
correctness of the specification, checking whether it matches the intended schedule.
This is the role of the parsing step of the methodology, which should also be supported
by the multimedia tool/environment. One possible way is to assist the user by playing
back (parts of) the document, although this can be cumbersome or ineffective (scenarios
have the potential to become very large and complicated as the degree of concurrency
and uncertainty increases). Another choice is to automate the process, which,
conversely, typically fails to foresee all the non-deterministic possibilities behind the
fuzzy causal rules/constraints (there may be hundreds of them). The solution should be a
mixture of both; whatever, it must detect inconsistencies among the objects’ rendering.
(A multimedia object is said “unrenderable” if two or more rules relating to it are
contradictory one another, implying, e.g., that the end of presentation of an object occur
before the start of the same one.) Additionally, the parsing process ought to indicate



critical points of entanglement where the uncertainty aspects of the model (e.g., fuzzy
temporal duration) should be refined or revisited for eliminating ambiguities during the
runtime presentation. Finally, another role of the parsing step is to provide the designer
with the means to interactively fine-tune the parameters of the fuzzy script directives,
such as the thresholds and membership function shapes/partitions.

3.2. Multimedia Component Model

Typically, the MMDoc creation involves searching for media data in an information
repository or capturing them through special equipment, and then organizing them to
convey the intended use. Once located/produced, the multimedia contents can be
assembled into an abstract structure compliant to some global logical framework and
also be assigned to some region of a display device according to a layout structure
[Karmouch 1996]. Following the guidelines from Gibbs’ work [Gibbs 1991], in MuSCoF
we assume a logical model wherein every MMDoc entity is modeled after a particular
type of component (an extension of the Scene_Comp abstract class), and these
components should be logically arranged through composite constructs (contains/peer
primitives in Table 2) and communicate one to the other through the interchange of
events. In our framework, there are two types of scene elements already modeled,
MMComp and MMSensor. The last comprehends special kinds of components situated
in a virtual display (that is, with no rendering features), which are created specifically to
cope with user interactivity. This class of elements should be extended if one wishes to
provide support for novel interaction styles, typically via special input devices. Figure 4
shows the communication infrastructure necessary (e.g., event brokerage) for the
elements’ runtime location and for the conveyance of their synchronization events.

Figure 4: Interactions underlying the MuSCoF multimedia component model.

MMComps can be seen as aggregations of two types of elementary units, those
relating to media contents and those concerning management tasks. Media objects
represent pieces of raw (binary) information classified into pairs of MIME
types/subtypes [Borenstein 1993] and may be associated to one or more media
presentation objects, which, in turn, are presentation versions containing rendering and
layout information. Hence, it is possible to have associated to the same MMComp one
or more media objects (all relating to the same semantics contents but with dissimilar
formats, like gif, jpeg) whose exhibitions are customized by the choice of specific
presentation objects. This decision allows that the same MMComp may be, in different



times, associated to distinct (fuzzy) duration intervals (hence, the fuzzy synchronization
points assume a relative character), therefore justifying the high-level, event-based
synchronization decoupling posed here.

The temporal manager is the unit responsible for maintaining, interpreting, and
executing all temporal directives associated to the MMComp it represents. For such, it
should be configured by the parsing step of MuSCoF with a base of event rules
containing all the information necessary for the triggering of synchronization events it
may produce along its existence. Such information typically indicates when and for who
a synchronization message should be forwarded. This manager keeps in charge of
running two clocks, for presentation and active influence purposes respectively. The
presentation clock is a kind of timeline marked with synchronization points to be fired
out for the communication with other components, following a “producer-consumer”
scheme. Once a sync point is reached, the temporal manager should broadcast a notice
towards those action managers (of one or more MMComps) which are listening to a
particular channel of the communication broker. Temporal managers export (through
the MMComp interface) operations permitting the online configuration of their clocks
through invocations coming from their peer action managers. Two instances of temporal
managers (from distinct MMComps) may have their clocks adjusted to run in the same
temporal pace for fine-grain synchronization purposes [Pazandak 1994]. As well, such
strategy allows that conditional restrictions (Table 2) of the form “if two MMComps are
somehow being concurrently rendered and at least one of them detects such fact, then
harmonize their presentation clocks in such a way that they can finish their exhibition
together” [Antonacci 2000] can be properly fulfilled.

Another kind of management mechanism relates to the MMComp state
maintenance. In MuSCoF, there are two orthogonal means of classifying a MMComp
state. In the first categorization, a MMComp may be in one of three states: passive,
active, or indefinite. A passive entity has no capability of influencing the
behavior/execution of a peer, but may be, otherwise, swayed by the activities produced
by other active components. Active components (furthering Gibbs’ conception [Gibbs
1991]) may have their presentation duration ∆p fuzzified and assigned with fuzzy
synchronization points. In some cases, it is not important or possible to discriminate
whether a MMComp state is passive or active, so it is labeled as indefinite.

The second type of categorization sets the MMComps apart into the following
(possibly extensible) situations: alive, expired, out-of-function, or indefinite. The last
category keeps the same semantics as discussed before. A MMComp in alive state
allows for another style of synchronization through the employment and fuzzification of
its associated liveness duration ∆l. Such variable refers to the temporal interval its
“physical presence” may influence the presentation of other scene elements. Thus, even
inert in the sense of rendering, this kind of component may still affect the state/behavior
of other elements (this is the case of any MMSensor). Alive components may be active
or passive and have their state classification changed along its execution, which is done
through invocations coming from peer action managers (see fuzzyCausal primitive in
Table 2). For this purpose, the state manager exports operations allowing for runtime
state settings. MMComps are said “expired” when their existence/exhibition do not have
anymore the power to influence other entities, and are said “out-of-function” when
either its existence or rendering have been hampered by some malfunction behavior of
the multimedia environment infrastructure (e.g., a loudspeaker fault). The parsing step



of MuSCoF interprets the user descriptive plan and then sets the initial states of all
MMComps according to the two aforementioned classification types.

The last kind of management element underlying the MuSCoF component model
constitutes the action managers. They cope with all activities realized by a particular
MMComp in respect to the behavior perceived by the other scene elements. Some
actions have well-known semantics, such as VCR operations (start, stop, pause,
resume), and may be already supported by the multimedia environment, whereas others
may be conceived by the designer for specific purposes. The separation of temporal,
state, and action managers promotes a range of interesting functionalities to the MuSCoF
component model: (i) it allows two or more managers being assigned to parallel threads;
(ii ) it lessens the bad side-effects caused by runtime faults in the managers; and (iii ) it
introduces another level of non-determinism, by allowing such situations where two or
more actions are concurrently trying to change the temporal/state conditions of the same
MMComp. Figure 5 shows the OMT static model for the MuSCoF component design.

Figure 5. Classes diagram for MuSCoF multimedia component model.

4. Example

In this section, we present an example of specification for a simple interactive
multimedia presentation. The example focuses on fuzzy relations among some media
objects and on the support to user interaction, which may influence the presentation’s
execution cycle. As illustrated in Figure 6, the presentation is composed of four general
phases (states). State A indicates that the presentation is turned off. State B implies that
it is turned on, but with no video and audio being presented. State C indicates that the
user has inserted a video-card in the virtual monitor and a video is being presented
without legend. State D denotes that a video is presented with legend. Each phase ought
to be described through a descriptive plan provided with a script directive. In this
scenario, all phases are composed by the same scene elements, that is, they have the
same logical/layout design (but different temporal interrelations), which should be
somewhat like follows: {script(MM0); sensor(mouse_sensor); mmcomp(video);
mmcomp(audio); mmcomp(legend); contains(MM0, mouse_sensor); contains(MM0,



video); contains(MM0, audio); contains(MM0, legend);}. The user may execute six
actions capable of performing transitions between the system’s states: 1) turn the
presentation on (causing the state change A ⇒ B); 2) turn the presentation off (causing
one of the following state transitions, B ⇒ A, C ⇒ A, or D ⇒ A); 3) choose a video
(and associated audio) to play, by inserting a card in the virtual monitor (state change B
⇒ C); 4) deactivate the video, by ejecting the card (C ⇒ B, or D ⇒ B); 5) insert the
legend (C ⇒ D); and 6) remove the legend (D ⇒ C). Additionally, the user may execute
regular VCR actions (pause, forward, rewind) on each media object (video, audio, and
legend) separately, which should be supported by specific instances of action managers.

Figure 6. Execution cycle of a multimedia presentation with user interaction.

In the above layout specification, there appears a multimedia sensor
(mouse_sensor) that keeps in charge of user control input. This sensor has a different
SensorAction_Mgr instance (see Figure 5) for each presentation frame, thus performing
different activities in accordance with the current system phase. It is through this
sensor’s action manager that the presentation of the MMComps of the scenario is started
up. For instance, moving from State B (all elements already created but none of them in
active state) to State C (video and audio being concurrently exhibited) implies that the
SensorAction_Mgr has signaled both the audio and video start managers for
commencing their presentation.

When the user inserts a card in the virtual monitor, audio and video should have
their exhibition initialized together. Although, in the case of delays (or failures) in the
sensor’s notifications, this may not be the case, and, thus, the designer should specify
another level of causal association between both MMComps. A possible fuzzy causal
rule for this situation is that the audio starts “quite in the beginning” of video
presentation, giving rise to fuzzyCausal(<video, beginning, “quite”, τ)> → <audio,
start, active>). As well, when the user inserts the legend in the video (C ⇒ D), the text
presented may change its color according to the video’s playback state (beginning,



middle, finish). This may be captured via three causal rules of the form
fuzzyCausal(<video, phase, , τ)> → <legend, change_color, toggle_state>), one for
each rendering phase. Finally, when one decides to specify the power-off of the whole
presentation by coordinating the sequential termination of all scene elements, the
following piece of plan description could be conceived {fuzzyEvent(e1, end_event,
video, stop); fuzzyEvent(e2, end_event, audio, stop); fuzzyEvent(e3, end_event,
legend, stop); fuzzyTimePoint(“about 100ms”, triang(100,95,105)); fuzzyConstr(e2,
e1, “about 100ms”, ⊕); fuzzyConstr(e3, e2, “about 100ms”, ⊕);}.

5. Related Work

Currently, there are some new “driving forces” that ought to be observed for the
conception of more effective synchronization models [Antonacci 2000, Karmouch
1996, Pazandak 1994]: expressiveness (referring to the types and number of temporal
orderings that can be expressed in a model), simplicity (can authors readily create
MMDocs that are clearly and concisely structured and easily interpreted, understood,
and modified?), flexibility (e.g., in the definition of the coordination rules and/or in the
maintenance of MMDoc temporal consistency) and support to interactivity and
uncertainty. The combination of the expedients offered by fuzzy and component
systems is advocated here as a promising solution towards such accomplishment.

Huang and Wang (1998) have devised a methodology towards the
synchronization of multimedia elements regarding the effects of user interaction. The
authors employ a finite state machine extension (very akin to Petri nets with delays and
priorities [Raposo 2001]) for synchronization control purposes, and investigate on how
the user interaction during real-time presentation might alter the temporal relationships
among the media objects. However, a drawback of such specification is that it is too
much complex for inexperienced designers grasping its peculiarities. It is our sentiment
that, by employing fuzzy sets reasoning, the multimedia specification comes to be more
tractable as well as flexible enough to incorporate subjective aspects.

Mediadoc [Karmouch 1996], a document architecture for multimedia
information, supports the creation of MMDocs through well-delineated (logical and
layout) structures and provides proper instruments for the detection and prevention of
illegal temporal specifications during the scenarios correctness verification. Yet simple,
its provision to synchronization specification does not cogitate any kind of activity
coming from external entities nor supports uncertain temporal duration nor allows the
decoupling and reuse of media elements into different scenarios.

Ali et al. (2000) have considered the problem of multimedia synchronization in
a Web environment and proposed a neurofuzzy controller as the scheduling device
responsible for the maintenance of the workload in a multimedia Web server. The fuzzy
controller has its fuzzy rule base constructed by means of a hybrid learning algorithm
that both defines the rules and adjusts their membership functions. Such initiative,
although very apropos to distributed multimedia purposes, does not take into account
the requirements imposed by application-layer, MMDoc temporal specifications. By
other means, Zhou and Murata (1998) have made use of a fuzzy Petri net (FPN)
approach for the uncertainty modeling of synchronization events in a distributed
environment. Although somewhat similar to the philosophy presented here, their work
has not centered upon the multimedia specification requirements imposed by MMDoc
elements, being mostly oriented to performance analysis and evaluation.



Our approach has characteristics borrowed from most of the models shown in
Section 2.3: It is based on the production-consumption of punctual events and on the
definition of fuzzy causality/restriction rules that determine their semantics, provides
decentralized events ordering through the encapsulation of separate timelines into each
MMComp, and also brings support to the hierarchical assembling of media components
into composites, as their decoupling allows for the combination of sequential/parallel
events that may be occurring in distinct levels of the same logical structure.

6. Final Remarks

This paper introduces a novel methodology that uses concepts of fuzzy sets and
software components for the temporal arrangement of multimedia document elements.
As we showed in our multimedia synchronization model, the use of fuzzy causal rules
and constraints allows for the creation of high-level descriptive plans for the design of
multimedia presentations. Among the advantages of this model, we can highlight the
support to the unpredictability of human interaction [Huang 1998] and the enhancement
of the understandability of specification scripts (besides dismissing a rigid formal
specification, fuzzy rules are more closely related to human reasoning).

Synchronization mechanisms based on software components generate a
decentralized coordination apparatus (following an event-based approach) that enhances
the scalability of the model. Moreover, the same MMComp may be reused in different
MMDoc scenarios, may be composed with others for the creation of composites, and, as
well, may aggregate several media objects (e.g., different formats for a video) and their
related media presentations (e.g., distinct resolutions) [Antonacci 2000]. The separation
between temporal and action managers provides a further degree of flexibility to the
methodology, in the sense that (i) each MMComp may have a different duration interval
associated to each of its media presentations (hence, each MMComp may have
customized its synchronization aspects with other entities through different
synchronization points); and (ii ) each action manager should be specialized to a
particular task (customized by the application designer), whose effects may dynamically
cause changes in the state and temporal rendering of its associated MMComp. Another
interesting feature of the decentralized control is that it supports unpredictable events,
such as the user interaction or device failures, without affecting the whole presentation.

As future work, a better formalization of the fuzzy synchronization model is
required, to fully evaluate its advantages and discover some possible drawbacks. A
declarative language based upon this model (e.g., an XML/SMIL extension [Antonacci
2000, Rutledge 1999) would ease both the portability and the creation of the descriptive
plans, as it might provide high-level constructs to implement the synchronization
primitives addressed here. Moreover, additional managers for dealing with other kinds
of interdependencies (e.g., spatial synchronization [Kwon 1999]) could be devised. As
well, it seems viable to employ FPNs for the modeling of the behavior of both temporal
and action managers [Raposo 2001, Zhou 1998] as well as for extending some other
Petri net-based approaches for temporal specification (e.g., OCPN [Little 1990]).
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