
DEPARTAMENTO DE ENGENHARIA DE COMPUTAÇÃO E AUTOMAÇÃO INDUSTRIAL

FACULDADE DE ENGENHARIA ELÉTRICA E DE COMPUTAÇÃO

UNIVERSIDADE ESTADUAL DE CAMPINAS

Relatório Técnico

Technical Report

DCA-001/97

Efficient Visualization in a Mobile WWW Environment

Alberto B. Raposo�, Luc Neumann�, Léo P. Magalhães���, Ivan L. M. Ricarte�

�UNICAMP (State University of Campinas)

FEEC (School of Electrical and Computer Engineering)

DCA (Dept. of Computer Engineering and Industrial Automation)

{alberto,leopini,ricarte}@dca.fee.unicamp.br

�Computer Graphics Center (ZGDV)

Dept. Mobile Information Visualization

neumann@zgdv.de

�University of Waterloo — Computer Science Dept. — CGL

lpini@cgl.uwaterloo.ca

February 1997

Abstract

The facility of access to information in the World-Wide Web (WWW), the expanding

availability of information technology, and the recent developments in the handling of

multimedia data are all important steps towards a Global Information Infrastructure ac-

cessible to anyone, anywhere in the world. However, in order to achieve this accessible

infrastructure, one should consider the aspects related to efficient communication. Some

of these aspects are addressed in this work. A mobile WWW rendering application using

VRML is introduced, the related problems are pinpointed, and approaches to overcome

them are proposed. As a first result we have developed an application that filters VRML

scenes to render only parts selected by the user.

Key words: World-Wide Web Application, Mobile Computing, VRML, Resource

Adaptive Distribution.

Contents

1 Introduction 3

2 Challenges of Mobile Computing 5

3 Supporting Technology 8

3.1 The World-Wide Web . 8

3.2 The Java Language . 8

3.3 Virtual Reality Modeling Language (VRML) 9

3.4 CORBA Technology . 10

4 Application Scenario and Solutions 12

4.1 Reducing the Scene Complexity . 12

4.2 Task Distribution . 14

5 Results 19

5.1 Implementation details . 20

5.2 Specification of the script . 28

5.3 Deficiencies Encountered . 30

6 Conclusions and Future Work 33

2

1 Introduction

The emergence of the World-Wide Web (WWW) caused an impressive growth of

the global information space, integrating and expanding the services offered by the In-

ternet and other networks. However, the number of users is increasing rapidly and the

information they need is becoming more and more complex, requiring new ways of com-

munication and interaction with these networks. The challenge is to reach the Global

Information Infrastructure (GII) [6], a step beyond the WWW which will allow more

efficient interaction with the information and will be globally accessible.

Our paper focuses on the accessibility issue, particularly concerning the technology

of mobile communications. Due to this rapidly expanding technology, mobile users with

portable computers may access information anywhere and at anytime. These mobile data

terminals are becoming increasingly integrated into the WWW [20, 22].

In general, a mobile WWW application uses mobile devices such as Personal Digital

Assistants (PDAs) or notebooks to access remote WWW services. The required con-

nection to the stationary WWW server can be established with communication facilities

provided by the mobile device itself (such as the Nokia 9000 Communicator) or with a

data capable (cellular) phone. The scenario is illustrated in Fig. 1.

Figure 1: Mobile Application Scenario.

This new communication style significantly affects the requirements of WWW appli-

cations and faces new challenges [4,17]. One challenge is the design and implementation

of highly interactive applications that include the handling of non-textual bulky informa-

tion. The main problems in handling such applications in a mobile environment are the

resource constraints of the mobile data terminal and the narrow bandwidth of wireless

networks. Thus, sophisticated concepts for the management and optimal utilization of

resources within a mobile system are needed.

3

In this paper we address the remote access of VRML 2.0 [21] worlds from a mo-

bile client, typically a laptop-like environment. In the section Challenges of Mobile

Computing we present the peculiarities of mobile computing and its challenges. In the

Supporting Technology section we introduce the tools used for the development of our

soluction, which is introduced in the section Application Scenario and Solutions. Pre-

liminary results are presented in the Results section, and in Conclusions and Future

Work we come to the conclusions and propose future improvements on this work.

4

2 Challenges of Mobile Computing

A mobile application accessing information somewhere in the WWW should be re-

garded as a distributed application. However, a mobile application with the partially

wireless communication link between the mobile device and the stationary server has to

take into account different properties than an application using a wired stationary envi-

ronment. A mobile environment is characterized by at least the following properties [13]:

� Limited resources of the mobile devices in terms of storage, battery power, memory

and processing power relative to non-portable devices.

� Low bandwidth, low reliability and high costs of wireless narrowband wide-area

networks (WANs). Typical bandwidths of currently available cellular systems are

9.6 Kbps or 19.2 Kbps. A new system offering up to 2 Mbps is supposed to be

available after the year 2000. Table 1 shows bandwidths of many current and future

mobile communication networks. Furthermore, a wireless network is less reliable

than a fixed one due to temporary disconnections.

� Imbalance of resource availability between the mobile device and the stationary

servers.

� Users have no fixed location and can move during a connection.

The introduction of interactive applications — such as a WWW application — used

within a mobile environment will only be successful when the requirements arising from

the handling of non-textual bulky data (e.g., graphics, animation) can be fulfilled. In order

to specify the requirements of an application and to estimate the degree of satisfaction

one can use Quality of Service (QoS) parameters. In Table 2 some sample values for a

number of QoS parameters for different media types are given. It can be inferred from

the table that current data rates over wireless WANs remain poor compared with required

data throughputs for multimedia applications.

A simple approach to overcome these problems might be to apply all the well-known

mechanisms for a distributed application in a wired network also for a mobile application.

However, they are designed for a higher bandwidth and richer resources at the end device.

5

Network Switching-Technology Bandwidth

GSM Connection-oriented 2.4, 4.8, 9.6 Kbps
Packet-oriented 9.6 Kbps

CDPD Packet-oriented 19.2 Kbps
Modacom Packet-oriented 9.6 Kbps

UMTS Packet-oriented n�64 Kbps (2 Mbps max.)

Kbps = Kilobit per Second
Mbps = Megabit per Second
CDPD = Cellular Digital Packet Data
GSM = Global System for Mobile Communication
UMTS = Universal Mobile Telecommunication System

(supposed to be available after year 2000)

Table 1: Bandwidths of mobile communication wide-area networks.

It will work, but the requirements in terms of throughput, delay, jitter, or response time

will not be fulfilled. This especially holds for the handling of distributed interactive

multimedia applications. Therefore, it is a challenge to develop appropriate techniques

such as compression, progressive refinement, previewing, etc. for a mobile environment

to solve these problems.

As pointed out by Watson [22], there are several communication optimization tech-

niques:

Data compression increases the effective bandwidth compressing the information to be

transmitted. Distillation [5] is an example of data specific compression developed

in order to improve response times. However, even with the best compression

techniques, the bandwidth of wireless communication is too narrow for an efficient

transmission of non-textual bulky data.

Caching uses local storage to reduce communication. Coda [18] is an example of mo-

bile system that uses caching to reduce bandwidth requirements and even to work

disconnected. This technique increases the requirements on local storage resources.

Prefetching tries to antecipate data requests. This technique hides network latency, start-

ing data transmission before the user requires it. However, if the prediction fails,

communication and storage resources are unnecessarily used.

6

QoS Max. Max. Throughput Bit error Packet

Medium Delay (s) Jitter (ms) (Mbps) rate error rate
Voice 0.25 10 0.064 � ��

�� � ��
��

Video 0.25 10 100 � ��
�� � ��

��

Compressed 0.25 1 2–10 ��
��

��
��

Video
File Transfer 1 — 2–100 0 0

Real-time 0.001–1 — � �� 0 0
data

Image 1 — 2–10 ��
��

��
��

Table 2: Sample values of QoS [19].

Data reduction filters the information to be transmitted. This technique is normally

used in the context of resource negotiation (e.g., a color video can be transmitted as

greyscale when the client display does not support colors). Data reduction is also

used to maintain the bandwidth requirements below a critical threshold. An exam-

ple of a system that uses this technique is Odyssey [18], providing “application-

aware adaptation”.

Usual solutions address two main aspects related to the specific properties or lim-

itations mentioned above. First, the transferred amount of data has to be as small as

possible, which requires that parts of the application data should be processed and stored

on the client side. The second aspect refers to the use of local resources such as process-

ing power and storage space, which should be the least possible. Thus, the client should

provide a presentation front end and communicate frequently with servers that process

computing intensive parts of the application.

It can be easily seen that solutions for one aspect are counterproductive for the other

aspect. A solution providing an appropriate balance between both aspects would over-

come the most serious problems — namely the narrow bandwidth and limited resources

— of a mobile environment.

7

3 Supporting Technology

In this section we present the tools used in the development of our solution.

3.1 The World-Wide Web

The WWW [1] is the most used resource of the Internet, incorporating support to

multiple protocols (through the Hypertext Transfer Protocol, HTTP) and multiple digital

data formats (through links in a hypertext written in the Hypertext Markup Language,

HTML).

The WWW has a client/server structure, where the client side is composed by a nav-

igator and browser tool, and the server side is composed by a daemon which receives

requests from clients and delivers HTML files (usually called pages) and requested data.

The client specify the Internet address of required information through an Uniform Re-

quest Locator (URL), which locates the server, the file with the data, and the protocol to

be used.

When the client is linked to the internet through a slow connection, as it happens

to be the case with mobile clients, some of the techniques described in the previous

section are used to improve its performance. Caching may be used to store hypertexts

and images locally in order to speed up reloads. Data reduction may be achieved by

setting options such as supress images. However, such strategy would not be effective

when manipulating VRML worlds through WWW clients.

3.2 The Java Language

Java [2, 8, 9] is a high-level programming language developed by Sun Microsystems,

Inc., which is becoming very popular for the construction of highly interactive pages in

the WWW. Small Java programs (applets) embedded in hypertext pages are transmitted

through the Internet and executed in the local computer when these pages are accessed

by a Java-enabled browser.

8

Java is platform-independent. A source program written in Java is translated into

bytecode, which is interpreted by virtual machines installed in each platform. HTML

provides the mechanisms to specify the URL of an applet bytecode, which is accessed

by the server, transmitted to the client, and locally executed. Therefore, the same applet

can be executed in distinct platforms, making it suitable for heterogeneous environments

such as the Internet and mobile environments.

Java is also a general-purpose object-oriented language, designed to be small and

simple. Java interfaces and classes are grouped into packages, with standard packages

(lang, util, io, net, awt, and applet) providing the basic resources of the lan-

guage.

Some of the provided resources are not so basic. The java.lang package supports

multithreaded programming, i.e., it allows programs to have many threads of execution

at the same time, each thread carrying its local data and sharing global information. This

is an important facility to multitask and distributed programming. The java.net has

classes for manipulating socket connections and URLs — Java was the first language

designed assuming that distributed computing resources are always available.

Since Java bytecode has to be interpreted by virtual machines, the performance of

Java programs is still significantly worse than that of programs written in a platform-

dependent language. However, based on its features, on the success it has obtained, and

on the performance improvements it will certainly gain, we can expect that Java is going

to be the one of the dominant languages for WWW and GII applications.

3.3 Virtual Reality Modeling Language (VRML)

The Virtual Reality Modeling Language (VRML) [21] is a file format for describing

interactive 3D objects and worlds in the WWW, just as HTML describes hypertext pages.

It allows hyperlinks to other VRML worlds or media, such as sound, animation, and

hypertext.

The current version of VRML, 2.0, supports interaction with objects, prototyping,

and animation resources. Interaction is provided by the definition of sensors and de-

9

tectors, such as time sensors, touch sensors, and collision detectors. Prototyping makes

created objects available to anyone who wants to use them. Animation resources in-

cludes keyframe and scripting facilities that support custom protocols for many scripting

languages, specially Java and JavaScript1.

In order to view a VRML world a specific browser is necessary. Such browser may

be an independent program, a Java applet, or a plug-in to a conventional Web browser.

We used the Liquid Reality package [3], a set of Java class libraries that implements

the VRML 2.0 specification, providing everything needed to write out, to render, and to

manipulate the scene graph described by a VRML script.

3.4 CORBA Technology

The Common Object Request Broker Architecture (CORBA) is the product of the

Object Management Group (OMG) that includes hundreds of computer-related compa-

nies. The CORBA standard [14,15], first published by the OMG in 1991, defines an open

object infrastructure to support application interworking across diverse architectures and

infrastructures. It provides a distributed object environment that supports the location

transparent invocation of methods on object and includes services — so called COR-

BAservices and CORBAfacilities — to build complex distributed systems more easily.

The Object Request Broker (ORB) and the Interface Definition Language (IDL) are

the basis of this open object infrastructure. The ORB represents an object bus enabling

client objects to make requests to and to receive responses from other local or remote ob-

jects. Furthermore, it provides means to manage the objects, advertise them, and describe

their metadata.

IDL provides a unique notification to specify an Application Programming Interface

(API) of a component. It is a neutral and declarative language, allowing to separate the

interface specification from the implementation. In other words, a client application can

invoke server functionality without taking care about the way the server is implemented

(e.g., programming language, underlying hardware). The implementation of object meth-

1JavaScript is a scripting language, with syntax similar to Java, supported by some browsers which
enables to include the source code of a script into an HTML page. In this case, text — and not bytecode —
is transferred to the client.

10

ods specified in IDL can be written in any language for which an IDL mapping exists.

Currently mappings for C, C++, Smalltalk, and ADA are available. The mapping between

Java and IDL is currently under work. IDL can be regarded as the glue that allows the

interoperation of client and server objects across networks and operating systems inde-

pendently of the programming language.

Using such an open object infrastructure in order to design a mobile application al-

lows to think in terms of distributed objects. Instead of being only partitioned into a client

and server component, as is the case for current WWW applications, a mobile distributed

application can now be composed of several distributed objects.

11

4 Application Scenario and Solutions

As already stated, we focus on a rendering scenario where mobile users connected to

the Internet via a narrow bandwidth communication channel request for the visualization

of a certain VRML world, either static or animated. The description of the world is

stored somewhere on an information server. This description will be retrieved, rendered,

and displayed on a mobile client. However, the narrow bandwidth and the restricted

processing power of the mobile data terminal request for intelligent strategies to enable an

interactive handling of the rendered scenes. Simply stated, the straightforward approach

of retrieving the scene description and rendering on a mobile client is not an adequate

solution, especially if we think of more complex scenes.

In this section, we present two complementary approaches for the solution of this

problem. In the first approach, Reducing the Scene Complexity, we simplify the ren-

dering process in the mobile client by reducing the complexity of the scene to be rendered,

allowing users to select which elements of the scene they want to visualize. The second

approach, Task Distribution, complements the former, improving performance of the

rendering process in the mobile client by distributing parts of the related tasks among the

resources of the stationary servers in the wired network.

4.1 Reducing the Scene Complexity

Rendering is notably a process that requires a large amount of processing power.

Due to the limited resources of mobile devices, techniques are necessary to simplify that

process. One straightforward approach is to filter the data to be transmitted and to render

only the parts of the scene that are actually of interest.

In order to demonstrate this strategy, we have developed an application capable of

selecting the elements (i.e., geometric objects, light sources, and cameras) of a remote

VRML world, which are going to be rendered and visualized in the mobile client [16].

This application runs in a mobile terminal, which is connected to an application server.

In this server there is a program capable of reading the VRML world, located in any

WWW server, parsing it and sending its hierarchical structure back to the client. The

12

client provides a user interface adapted to the hierarchical structure, enabling the user

to select the elements of the world he/she wants to see. The selected elements are then

sent to the application server, which is capable of parsing the original VRML file and

extracting from it only the desired elements, sending a valid “sub-VRML” world to the

client, which can finally render the scene. This approach is illustrated in Fig. 2. The

application is executed in the client as a Java applet downloaded with an HTML page.

URL of the VRML file

Liquid Reality

(Renderer and Viewer)

Interface

Selection of elements

Applet

VRML file

"sub-VRML"

Creator of the

Filter

Parser

WWW Browser

CLIENT APPLICATION SERVER

WWW SERVER

1
2

3

4

5 1 - Send the URL of the file to be read

3 - Send the script with the elements’ hierarchy

4 - Send the script with the desired "sub-VRML"

5 - Send the "sub-VRML" world

2 - Read and parse the VRML file

Figure 2: Strategy to visualize only a subset of a VRML 2.0 world.

The process begins by calling the application using any Java-enabled WWW browser.

At this moment, a connection is established between the client and the application server.

The next step is to send the URL of a VRML world to the application server (this is

represented by arrow labeled 1 in Fig. 2). The application server will then use Java

resources to connect with the server of the VRML file, read and parse it (arrow 2 in

Fig. 2). The first output of the application server is a text script, representing the hierarchy

of the elements of the VRML world, which will be sent to the client (arrow 3).

Based upon the received script, the applet creates an interface, which allows the user

to select the desired elements of the world. After this selection, a new script is sent to

the application server, describing the selected elements (arrow 4 in Fig. 2). Using this

new script, the application server can create a new VRML world from the original one,

by extracting only the desired parts of it. This final sub-VRML world is then sent to the

client (arrow 5), that visualizes the results using methods of the Liquid Reality library [3].

13

Details of the implementation are presented in Section 5.

The division of the program into an applet (executed in the client) and an application

server is needed due to security restrictions of some WWW browsers (e.g., Netscape).

Because of these restrictions, the client would only be able to read VRML worlds located

in the WWW server of the applet page. To overcome this limitation, the application server

was developed so as to act as a proxy server [11], a service to grab information from the

WWW and send to whoever has requested it. The application server is able to grab that

information because it is executed as an independent program, not subject to restrictions

imposed to applets.

Another aspect that need to be considered is a good trade-off using both client and

server resources in the rendering process. This is the topic of the following section.

4.2 Task Distribution

In this section we present a solution to optimize the rendering process by the distri-

bution of the rendering work (tasks) among the available resources of the mobile client

and the stationary servers. The optimization will primarily focus on a fast feedback to the

user even over a narrow bandwidth network. The main approach is to use the knowledge

about the application semantic data and the environment resources to distribute the tasks.

Furthermore, user preferences defining the preferred trade-off between quality and trans-

fer time will be used to control the distribution. This knowledge will avoid overloaded

clients and servers and provide the best achievable quality of service combined with a

short response time for the user.

Keeping the application scenario mentioned above in mind and considering a multi-

tiered application architecture, then the rendering application can roughly be separated

into the following components:

� Presentation logic;

� Application (or Rendering) logic;

� Data management.

14

This means that the rendering process is separated from the data and the user interface.

That type of architecture is already well known in the area of business applications, and

is depicted in Fig. 3.

Presentation
Application

Logic Storage

Figure 3: Three tier application architecture.

A straightforward approach to map this application functionality on a multi-server

environment is to locate the presentation logic on the client, the bulk of the application

logic on an application server, and let the data management to be done by a third server.

This offers different partitioning possibilities, that range from a thin up to a thick client

respective server.

Besides, the presentation logic should be separated into two further different func-

tional objects as it is defined by the Model View Control (MVC) paradigm in Smalltalk

[7]. Keeping all this together, a mobile client/server application is defined as a composi-

tion of objects that play together as illustrated in Fig. 4.

Presentation

Interaction

StorageApplication
Logic Layer

Facility

Facility

Notify

Notify

Call

Store

Retrieve

Figure 4: Basic Mobile Application Model.

For the best distribution of the different tasks to the suitable resources we propose

an architecture with a Resource and Task Manager (ResTaMan) [12] that distributes and

controls the rendering process using application semantic information. ResTaMan can

15

be regarded as a proxy located between the different stationary servers and the mobile

client. In order to handle the application semantic information the filter introduced in the

previous subsection can be used. It extracts the relevant parts of a scene to identify the

tasks for the different renderers.

The establishment of such an architecture is based on two main points: the introduc-

tion of a semantic content header for the scene description and the application of Java-

based ORBs to integrate the distribution architecture into the WWW. Independently of

the separation strategy the distributed rendering architecture will encompass at least

� a representation facility (e.g., located on the mobile client),

� several VRML renderers with different properties (on several stationary servers),

� a VRML analyzer and a distribution manager (part of the ResTaMan) to identify

and distribute the different tasks, and

� a composing and synchronization tool for the presentation (ResTaMan).

The VRML analyzer reads the semantic header and the world description. The header

contains additional information about the content of the scene. It can describe which

objects are in the background (BG) or in the foreground (FG), define different rendering

qualities for the scene, or establish the priority of objects. The semantic header can be

regarded as metainformation about the scene supporting the identification of subtasks

to be distributed. Here, the filter introduced in the previous subsection may be used to

extract the relevant parts of a scene for the different renderers. In combination with an

Open Distributed Processing (ODP) Trader [10], which is a yellow page service knowing

the properties of the environment resources, a good utilization of the rendering resources

on the mobile client and in the fixed network can be achieved. Finally, an image composer

and synchronizer is necessary to display the result.

Fig. 5 shows the different components and the dataflow between them. In this case

the metainformation describes the foreground and background of the scene. The task for

the foreground rendering is done on the mobile client and the background rendering is

performed on several renderers on the fixed network. The Request Manager receives the

requests from the mobile client, invokes the VRML analyzer and distribution manager.

16

Distribution
Manager

Renderer

Renderer

Renderer

VRML 2.0

SEMANTIC DESCRIPTION
(e.g. Foreground/Background)

Distributed
Application ServerResource & Task Manager

Request
Manager

VRML Analyzer

Presentation

Mobile Web Browser

Interaction

Rendering (FG)

VRML (FG)

IMAGE (BG)

IMAGE’’’ VRML’’’

VRML’’

IMAGE’’

VRML’

IMAGE’

Figure 5: Distribution of VRML Rendering.

The distribution manager delegates and schedules the identified subtasks. It can be seen

as a master component, that instructs various resources as workers to perform a subtask.

For the integration of ResTaMan in the WWW environment we will use Java ORBs.

They enable the WWW browser to gain access to arbitrary CORBA services. That means

it allows the direct integration of computational services in the WWW. A Java applet can

be downloaded to the WWW client and serve as CORBA client accessing services using

the Internet Inter-ORB Protocol (IIOP) [15]. In our approach it contacts the ResTaMan

object that represents a metaserver from the viewpoint of the client. The entire rendering

application consists of a set of interworking objects playing together via an ORB. For the

transmission of images or image sequences we use a stream oriented connection between

the Applet and ResTaMan that may be established with an IP socket connection. Thus,

for the bulk data transfer the stream connection is used and the control operations are

transmitted via the IIOP. Fig. 6 illustrates the integration of our architecture with the

WWW.

Nevertheless, VRML also describes interactive worlds. Therefore, we need a dis-

tributed event mechanism to send information about the occurrence of a specific event in

the client to the appropriate remote object. CORBA introduced an Event Notification Ser-

vice allowing objects to register their interest for specific events or to inform interested

parties about the occurence of events. This is all controlled via a specific object called

Event Channel. We can use this event channel object in our environment to handle events

17

Manager
Request

Manager
Distribution

Object Request Broker
Web Server

Fixed Network

VRML World

Renderer Farm

ResTaMan

Analyzer

Trader

VRML

Mobile Network

Client Applet

Web Browser

HTTP

HTTP

Connection
Stream

IIOP

Figure 6: Integration of the Distributed Rendering Architecture into WWW.

and to inform the respective rendering object.

18

5 Results

An application (written in Java) was developed in order to test the script filtering

strategy. This application is designed to run in a terminal (fixed or mobile), which is

connected to the application server. In this server there is a program capable of reading

the VRML world (located in any WWW-server), parsing it and sending its hierarchical

structure back to the client (the mobile terminal). The client, based upon the data received

from the server, creates a simple graphical interface that gives the user the opportunity

of selecting part of the world he/she wants to see. The selected sub-tree (or sub-trees) is

then sent back to the application server, which is capable of parsing the original VRML

file and extracting from it only the desired parts, sending a valid sub-VRML file to the

client, which can finally call a VRML 2.0 viewer.

The application runs in the client as a Java applet downloaded with a HTML page.

The process begins by calling the application home page using any Java compatible Web

browser, such as recent versions (higher than 2.0) of the Netscape Navigator. At this

moment, a socket is created between the client and the application server2. The next

step is to write the URL of a VRML world and send it to the application server. The

application server will then use Java resources to connect to the server of the VRML file,

read and parse it. The first output of the server is a text script, representing the hierarchy

of the objects of the VRML world, which will be sent to the client. A brief specification

of this script is in Section 5.2.

Based on the received script, the applet creates a simple interface which allows the

user to select the desired sub-tree(s) from the file. After this selection, a new script is sent

to the server, describing the selected parts. This script is similar to the previous, having

simply the keywords true or false appended to the objects in order to indicate whether

they are selected or not. Based on this new script, the application server can create a new

VRML world from the original one, by extracting only the desired parts from it. This

final sub-VRML world is then sent to the client, that will finally be able to see the desired

world, using methods of the Liquid Reality library.

Partitioning the program into an applet (executed in the client) and an application

2Currently running in caolho.dca.fee.unicamp.br:8079.

19

server is needed due to a security restriction of the Netscape browser. As stated in [2],

“applets run on the computer browsing your Web page, but they can only access files and

sockets on the computer serving the Web page.” Because of this restriction, the client

would only be able to read VRML worlds located in the WWW server of the applet’s

page. In order to overcome this limitation, the application server was developed so as

to act as a proxy server, a service that “grabs requested information from the Web and

sends it to whoever requested it.” The application server is able to grab that information

anywhere in the Web because it is executed as an independent program, not subject to the

applet restrictions.

5.1 Implementation details

The proposed approach can be used to accelerate the visualization of VRML worlds in

mobile terminals by reducing the data transmission involved in this process. The scripts

are small text files and the sub-VRML file is also a text file that can be small, depending

upon which sub-trees were selected.

The developed application can also be seen as a starting point for a larger applica-

tion, which would parse not only the objects structure, but also the textures, geometry,

animation, and other aspects of the VRML files.

The main source files of the application are:

VRMLServer.java is the application server main program. It has an infinite loop that

waits for a connection on its port. When this connection occurs, it creates a new

thread, which deals with the client communication protocol, reading the VRML

file, translating it into a script, and doing the final parsing of the VRML (i.e., re-

moving the undesired nodes from the original VRML), as requested by the client.

ReadVRMLFile.java is the program executed in the application server that reads the

VRML file and translates its structure into a script.

ParseVRMLFile.java is the program, also executed in the application server, responsi-

ble for creating the sub-VRML file after the selection of objects by the client.

20

Interface.java is the client program, an applet. It deals with communication and in-

terfacing, and is also responsible for the translation of the script into a tree data

structure.

SimpleViewer.java is the renderer, which uses methods of Liquid Reality library.

The application server

The server is implemented by the VRMLServer class, whose main methos simply

waits for a connection to the server at the specified port3. When this connection occurs,

a socket is created between the client and the application server, and a new instance

of the class ServerControl is established, using this socket. The new instance of

ServerControl class will be executed in a separated thread, allowing more than one

client be connected to the server simultaneously. The piece of the code created to do that

is shown below:

// Creating a server, that waits for a connection
ServerSocket ss = new ServerSocket(8079);

// Continuously monitoring for connections
for(;;)
{

// Creating a socket when a client asks for a connection
Socket incoming = ss.accept();
// Starting a new thread, that will run class ServerControl
new ServerControl(incoming).start();

}

The ServerControl class manages the communication protocol between the client

and the application server.

The communication starts with a signal from the client, which wants to read a VRML

world. When the application server receives this signal, it becomes prepared to read

the URL of the VRML world, which is the next information the client is going to send

(arrow 1 in Fig. 2). After reading this URL, the application server connects to the WWW

server where the desired VRML file is located, and reads this file (arrow 2 in Fig. 2).

3In the example, port 8079.

21

After these initial steps, the application server has already downloaded the original

VRML file, which is now stored in a string variable of the program. This variable will be

used to the creation of the script that will be sent to the client (ReadVRMLFile) and in

the final parsing of the file, when the undesired nodes will be eliminated (ParseVRMLFile).

Creating the script

This task is performed by the ReadVRMLFile class. After reading the VRML file,

the application server parses it to write a text script, that will be sent to the client. The

application server reads each word of the VRML file (stored in a string variable) and calls

the method getKeyWords, that will compose the script correctly, while the interested

keywords are being found in the original file. The getKeyWords method is a method

of the ReadVRMLFile class.

This method looks for the following keywords in the VRML file:

Shape establishes the beginning of a Shape node, i.e., a geometric object of the scene.

When this word is found, it is written in the script. Inside a Shape node, the

method also looks for the auxiliary keyword geometry, that describes the geo-

metric characteristics of the node. When this word is found, it is written in the

script, and the program reads the next word in the file, that is the name of the geo-

metric node representing the geometry of the object (Sphere, Cone, Text, and

so on). This word is also written in the script.

PointLight, DirectionalLight and SpotLight are the keywords for illumination nodes.

When one of these words is found, it is written in the script, and the program looks

for the auxiliary keywords location and direction, describing some features of the

light source.

Viewpoint establishes the beginning of a camera node. This word, when found in the

original file, is written in the script, and the program starts the search for auxiliary

keywords for the camera: position and orientation.

children indicates a level change. Every time this word is found in the file, we entered a

deeper level of hierarchy (i.e., the following nodes are children of the current one).

22

When this word is found, a global variable indicating the current hierarchical level

is updated and the value of the new level is written in the script. The children nodes

are enclosed by brackets. Because of that, [and] are also considered keywords (a

] can determines the return to an upper hierarchical level).

Switch indicates the beginning of a Switch node, i.e., a node that allows a choice

among the various nodes defined inside of it. This word is written in the script and

the method looks for the auxiliary keyword whichChoice, that indicates which

node of the Switch is going to be visualized.

LOD is the keyword for the Level Of Detail node.

DEF is used to give names to specific nodes, that can be later reused. This word is

considered by the method if it is related to any of the previous key nodes (Shape,

Viewpoint, PointLight, etc), otherwise it is ignored. In the case of relating

to a key node, the word is written in the script, followed by the name given for the

node and the node itself (followed by auxiliary keywords, as stated previously).

USE indicates the use of a predefined node. This word is considered only if the equiva-

lent DEF was not ignored (i.e., USE will be written in the script only if it is related

to a key node).

An important observation about the keywords Switch, LOD and DEF is that their

definitions are enclosed by braces (f and g). For this reason, these symbols are also

considered keywords (like the brackets, for the children nodes).

After the creation of the script, it is transmitted to the client (arrow 3 in Fig. 2), which

creates an interface for the selection of the desired objects. This interface and the details

of the client side will be discussed in the next section.

The client

Interface.java is the program being executed at the client. It is an applet em-

bedded in the application home page. When this applet is initialized, it opens a socket

connection to the application server, that should be waiting for a connection (as explained

23

in the description of VRMLServer). At this moment, the applet also creates a simple

user interface, with which the user will be able to select the VRML world and the objects

of this world he/she wants to see.

On the top of the applet window (Fig. 7) there is a text field to write the Uniform

Resource Locator (URL) of the VRML file the user wants to work with. When this name

is correctly written in the text field, the user can click one of the two buttons labelled

Read it to send this URL to the application server. After that, the application server will

read that VRML file, parse it, and send the script back with the hierarchical structure of

the VRML file (all this process was discussed in the previous sections).

Figure 7: Interface of the developed application.

When the client receives the script, it is shown in the large text area below the two

buttons. In fact, the script is shown in the applet only for demonstration purposes, since

the user does not have to work on it. Actually, the user does not even have to know about

24

the existence of this script.

The user can select the desired objects of the scene using the buttons below the text

area. The user should click the button Geometric Objects to select among the geometric

objects of the scene, Light Sources to select among the light sources, and Cameras to

select among the cameras4. When one of these buttons is clicked, a colored panel appears,

with the name of all the objects of that kind in the first hierarchical level. If there are

objects of the selected kind in a deeper hierarchical level, a button Next Level can be used

to change the panel contents to the names of the objects in the next level.

By default, all the objects are chosen; the user has to click only on the objects he/she

does not want to visualize. If the user deselects (selects) an object, all its descendants

will be automatically deselected (selected).

Once the user has deselected the objects he/she does not want to visualize, he/she can

click the button See the resulting VRML to visualize the created sub-VRML world. At

this moment, the user work is finished; he/she must only wait for the image.

After the button See the resulting VRML is activated, the client rewrites the script,

adding the words true or false after each object, indicating whether the object is selected

or not. This new script is sent to the application server (arrow 4 in Fig. 2), which will

create the sub-VRML world based on it. This is the topic of the next section.

A final observation about the applet interface should be made, regarding the difference

between the two buttons Read it. The button Read it (new) makes the application server

read the VRML world as a new file, throwing away the information about the sub-VRML

world previously created. The button Read it (add) makes the application server maintain

that information, merging two sub-worlds. In this way, the application allows that objects

of different VRML worlds to be joined in another world — the tool can be used not only

as an object-extraction tool, but also as a merging tool.

4It is important to note that the Viewpoint node (that defines the camera) of VRML 2.0 is a blindable
node, i.e., there may be many instances of it in a scene. However, only one instance can be active at any
instant of time. If more than one instance is active, the renderer will use the last active viewpoint.

25

Creating the sub-VRML world

This task is performed by the ParseVRMLFile class. When the application server

receives from the client the script containing the information about which objects were se-

lected , it calls the methodsearchInFile, that functions similarly to the getKeyWords

method, described in the previous section. The main difference is that the searchInFile

method rewrites the VRML file (or, in other words, writes the sub-VRML file) based on

what is read from the script, while the getKeyWords composes the script based on

what was read from the original VRML file.

searchInFile is a method of ParseVRMLFile class that, like the getKeyWords

method, searches the following keywords in the received script:

Shape, PointLight, DirectionalLight, SpotLight, Viewpoint: when one of these key-

words is found in the script, the program reads the next word to know if this object

was selected or not. If the word is true (i.e., it was selected), the node is copied

from the original VRML to the sub-VRML. If the word is false, the node was not

selected and will not be copied to the sub-VRML file.

DEF: when a definition is found in the script, an additional search is needed to know

if there is at least one selected node in that definition. A definition itself is not a

node, but comprises one or more nodes. If there is at least one selected node in that

definition, it should be written. Otherwise, if no node of a definition was selected,

the definition will not be copied at the moment, but should be stored in a vector of

unused DEFs, because it can be reused later.

USE: if this node was not selected, it will be simply skipped. However, if it was selected,

the program must search the vector of unused DEFs. If it is the case of using a def-

inition previously skipped (i.e., stored in the vector of unused DEFs), the definition

should be written in the place of the USE, and removed from the vector.

whichChoice: this word is considered as a keyword here because, based on the choice

made in the client, the corresponding Switch node could have its value changed

— the interface at the client side allows that the user changes the choice of such

node. The new choice is transmitted in the script. So, when this word is found, it

26

cannot be copied from the original VRML file, but from the script received. This is

a first experiment using the idea that the client could also be able to change features

from the original VRML.

All other nodes that are not treated in this application will simply be copied from the

original VRML file to the sub-VRML.

The dynamically created sub-VRML world is stored in the application server having

the name subVRMLddmmyyhhiiss.wrl, where ddmmyy is the current date (day, month,

year) and hhiiss is the time (hour, minutes, seconds) when it was created. This name will

appear in the applet window at the client when the resulting image is visualized, and the

user will be able to download the sub-VRML world he/she created.

Now that the application server has stored the sub-VRML world, it can send the name

of this world to the client in order to allow the visualization (arrow 5 in Fig. 2).

Visualization of the results

To visualize the resulting sub-VRML world, the program SimpleViewer.java

uses classes of the Liquid Reality library [3]. Liquid Reality is a set of Java class libraries

that gives the user VRML functionality. In other words, Liquid Reality implements the

VRML 2.0 specification, providing everything needed to write out VRML, to render, and

to manipulate the scene graph. Although it is a commercial product, there is currently a

beta version freely available on the Web5.

When the client receives the URL of the created sub-world, it executes a method

of SimpleViewer class, that utilizes the BrowserView3D class of Liquid Reality.

The latter class is suitable for implementing browsers, since it supports the essential

functionality of a browser, and parses the appropriate input. In fact, this class acts like

a “black box” where the input is the URL of the VRML file and the output is a frame

showing the rendered world; this frame appears in the applet window at the client.

In the SimpleViewer frame the user is able to visualize the sub-world he/she has

5http://www.dnx.com/products/lr

27

created and to “walk” through it — i.e., with the mouse one can change the observer’s

position, simulating a walk in the world.

5.2 Specification of the script

The script proposed to send the information regarding the hierarchical structure of a

VRML world is simply a text file that represents each hierarchical level by a number.

Every time the word children is found on the VRML file, a deeper hierarchical level

is defined and when the definition of the child is finished, we come back to the upper

level.

Besides the information about the hierarchical level, the script gives information

about the objects of the scene (here, the term “objects” refers to geometric objects, light

sources and cameras). For example, the script contains information about the geometry

of the objects, the position and direction of light sources, etc. This information, although

not directly necessary to select the sub-trees, can be used to help the user in knowing

with which object he/she is dealing and to facilitate future extensions of the application

— for example, the client could be able to change the characteristics of an object. To

transmit this information, the script uses the same keywords as the VRML, thus ensuring

consistency.

Fig. 8 represents a possible structure of a VRML file. The script for the file repre-

sented in this figure would be:

1
PointLight

location x y z
2
DirectionalLight

direction x y z
1
SpotLight

location x y z
direction x y z

0
Viewpoint

position x y z

28

orientation x y z
1
2
3
Shape

geometry Sphere
Shape

geometry Text
2
3
4
Shape

geometry Cone
3
2
1
0

The x, y and z in the previous script are only meta-symbols, representing the numbers

in the actual script.

Instancing (keywords DEF and USE in VRML) is also treated by the script — it

delimits the definitions and transmits the reuses of them. The following example defines

a sphere called ball at level 1 and uses it further in another hierarchical level.

1
DEF ball
Shape

geometry Sphere
ENDDEF
2
3
USE ball
2
1
0

The nodes Switch and LOD of VRML are also considered in the script. The former

allows to choose one among several children nodes — all the children and the choice

are passed in the script. LOD node allows to give different definitions for an object,

according to the distance from it the observer is located. All these definitions are passed

29

in the script. The next example shows a script with the Switch node used to select

between two cameras (the first one is selected) and a LOD node, defining two shapes for

an object.

1
Switch

whichChoice 0
Viewpoint

position 10. 10. 20.0
orientation 0 0 1

Viewpoint
position -10. 10. 15.0
orientation 0 0 1

ENDSwitch
0
1
LOD
Shape

geometry Sphere
Shape

geometry Cone
ENDLOD
0

5.3 Deficiencies Encountered

The tests made with many VRML worlds have detected some problems in the appli-

cation that have not been solved yet, but that should be corrected in a near future:

� The application does not consider nodes declared in other VRML files, i.e., Inside

nodes are ignored in the model of the hierarchical structure of the VRML. Inside

nodes are used to make a link with a node that is located in another VRML file.

� A Switch node must have all its nodes of the same type — either geometric ob-

jects, or cameras, or light sources. Although generally a Switch node is used to

30

select among nodes of the same type, there is nothing in the VRML 2.0 specifica-

tion that obligates all the Switch children to be of the same type. If this happens,

the selection among the children might not work correctly.

� If a Switch node follows another Switch node with the same type of children,

in the same hierarchical level, things may not work properly.

� If the number of nodes of the same type in a hierarchical level is too large, there

could be not enough space for all of them in the client’s interface window.

� The user interface is still very simple. A possible improvement is to present graph-

ically the hierarchical structure of the world.

Other deficiencies of the application are related to problems of the current beta version

of Liquid Reality. These problems are supposed to be solved in the final version of the

tool:

� Liquid Reality does not run properly under Netscape; however, it works properly

under the appletviewer of the JDK, the Java Development Kit6.

� Liquid Reality does not implement the complete specification of VRML 2.0 yet.

For instance, Text nodes and some kinds of textures are not implemented in the

current beta version.

6http://java.sun.com/products/jdk/

31

P
oi

nt
Li

gh
t

S
po

t
Li

gh
t

D
ire

ct
io

na
l

Li
gh

t

S
ph

er
e

T
ex

t

C
on

e

Le
ve

l 0

C
am

er
a

Le
ve

l 1
Le

ve
l 2

Le
ve

l 3
Le

ve
l 4

Figure 8: Example of a VRML 2.0 hierarchical tree.

32

6 Conclusions and Future Work

There is a growing need for tools supporting the interactive access, manipulation, and

visualization of distributed multimedia information to realize the vision of “all informa-

tion at your fingertip”. One great challenge is the improvement of the accessibility in the

WWW using mobile devices. The main problems are the limited resources on the mobile

terminal and the narrow bandwidth of the wireless link.

In this report we presented solutions aiming to provide a good trade-off between band-

width and resource requirements. We developed an application enabling the user to select

elements of a VRML world and proposed an architecture for the adaptive distribution of

tasks in a mobile environment.

The application has been implemented to demonstrate and analyse our filtering ap-

proach. It reduces the utilization of client resources and the amount of data transferred.

The next steps will be in the direction of enhancing the user interface making it more

intuitive. This can be achieved for example with a graphical representation of the hierar-

chical structure of the VRML world. Further, we will work on other possibilities of the

application like that of mixing elements of different worlds.

Our experience, however, showed that a technique to avoid the overload of the client

using server resources was necessary. Therefore, we proposed an architecture in order

to distribute tasks among the mobile client and the servers in the fixed network using

application semantic data and environmental information. It divides the tasks to be done

among several stationary servers to reduce the utilization of the client resources and to

produce very fast first results. In principle the partitioning of the tasks can be related to

the screen division or the scene content. Possible strategies are quality level or scene

partitioning.

In the quality level strategy, one can define different quality levels that vary in the

amount of work items for a rendering task. The scene can be rendered in parallel with

different qualities from several renderers. Assuming the higher quality level, the longer

it takes to render the image, quality can increase step by step like progressive refinement.

The different qualities can refer to shading method, texture mapping, resolution of the

image, or level of detail.

33

Using the scene partitioning approach the scene is subdivided into smaller parts to be

rendered in parallel. One obvious approach is to subdivide the pixels among the renderers

so that each of the involved renderers is responsible for a specific subarea of the entire

image. If we are using the content of a scene, then we can distribute subparts of a static

scene (e.g., foreground and background) or subparts of an animation (i.e., dividing into

frame sequences).

The main advantage of our approach is the integration of efficient transmission and

user interactivity. The former is achieved by the data filtering and distribution techniques

presented. The interactivity of our solution is represented by the user selection of the

elements he/she wants to visualize. In the current prototype, this interaction still requires

some knowledge of VRML by the user, but the goal is to use semantic information (de-

fined by the author in the semantic content header) to achieve as much transparency as

possible in the process. In this way, the user would be able to select objects by the role

they played in the world (as defined by the author). Another possibility is to have the au-

thor assigning levels of priority to objects in the world, with a high level to objects which

are essential to the scene and a low level of priority to details and textures, for example.

In this case, the user would have only to set up to which level of priority he/she is willing

to wait.

Acknowledgements

This paper is a result of ProBrAl 002/94, a cooperation project between UNICAMP

(State University of Campinas) and the Technical University of Darmstadt, sponsored

by CAPES (Brazil) and DAAD (Germany). We deeply appreciate the support granted by

these institutions. We would like to thank FAPESP and CNPq (Brazil) for the sponsorship

of some authors. Special thanks to José M. De Martino, Dr. Rüdiger Strack and Jian

Zhang for helpful pointers and clarifying discussions.

34

References

[1] T. Berners-Lee, R. Cailliau, A. Luotonen, H. F. Nielsen, and A. Secret. The World-

Wide Web. Communications of the ACM, 37(8):76–82, August 1994.

[2] G. Cornell and C. S. Horstmann. Core Java. SunSoft Press, 1996.

[3] Dimension X. Liquid Reality, 1996.

(http://www.dnx.com/products/lr/).

[4] George H. Forman and John Zahorjan. The Challenges of Mobile Computing. IEEE

Computer, 27(4):38–47, April 1994.

[5] Armando Fox and Eric A. Brewer. Reducing WWW Latency and Bandwidth Re-

quirements by Real-Time Distillation. In Fifth International World-Wide Web Con-

ference, Paris, France, May 1996.

(http://www5conf.inria.fr/fich html/papers/P48/Overview.html).

[6] N. Gershon, J.R̃. Brown, et al. Computer Graphics and Visualization in the Global

Information Infrastructure (special report). IEEE Computer Graphics and Applica-

tions, 16(2):60–75, March 1996.

[7] Adele Goldberg and David Robson. Smalltalk-80, The Language. Addison-Wesley

Series in Computer Science. Addison-Wesley, September 1989.

[8] James Gosling, Bill Joy, and Guy Steele. The Java Language Specification — Ver-

sion 1.0. Java Series. Addison-Wesley, 1996.

(http://java.sun.com/doc/language specification/index.html).

[9] James Gosling and Henry McGilton. The Java Language Environment — A White

Paper. May 1996.

(http://java.sun.com/doc/language environment/).

[10] ISO/IEC DIS 13235: Information Technology — Open Distributed Processing —

ODP Trading Function.

[11] Ari Luotonen and Kevin Altis. World-Wide Web Proxies. In First International

World-Wide Web Conference, Geneva, Switzerland, May 1994.

(http://www1.cern.ch/PapersWWW94/luotonen.ps).

35

[12] L. Neumann, J. Zhang, and R. Strack. Concepts for the Efficient Handling of Mul-

timedia Data within a Mobile Environment. MOMID Deliverable 3, Computer

Graphics Center, July 1996.

[13] L. Neumann, J. Zhang, and R. Strack. Evaluation of the Existing and Forthcoming

Mobile Infrastructure. MOMID Deliverable 2, Computer Graphics Center, March

1996.

[14] Object Management Group (OMG). The Common Object Request Broker: Ar-

chitecture and Specification; Revision 1.1. OMG TC Document 91.12.1, OMG,

December 1991.

[15] Object Management Group (OMG). The Common Object Request Broker: Archi-

tecture and Specification; Revision 2.0. OMG TC Document, OMG, July 1995.

[16] A.B. Raposo. Extracting Objects in a VRML2.0 file. Technical report, ProBrAl

002/94, 1996.

(http://www.dca.fee.unicamp.br/projects/prosim/publiPS.html).

[17] M. Satyanarayanan. Fundamental Challenges in Mobile Computing. In 15th. ACM

Symposium on Principles of Distributed Computing, Philadelphia, PA, May 1996.

(http://www.cs.cmu.edu/afs/cs/project/coda/Web/docs-coda.html).

[18] M. Satyanarayanan. Mobile Information Access. IEEE Personal Communications,

3(1), February 1996.

(http://www.cs.cmu.edu/afs/cs/project/coda/Web/docs-coda.html).

[19] Wassim Tawbi. La Qualité de Service Dans les Systèmes de Communication Mul-

timédia: Un Cadre d’Etude et Spécification d’un Protocole de Négociation entre

Applications. PhD thesis, L’Université Pierre et Marie Currie, Décembre 1993.

[20] Geoffrey M. Voelker and Brian N. Bershad. Mobisaic: An Information System for

a Mobile Wireless Computing Environment. In Workshop on Mobile Computing

Systems and Applications, Santa Cruz, December 1994.

(http://www.cs.washington.edu/homes/voelker/mobisaic/papers.html).

36

[21] The Virtual Reality Modeling Language Specification — Version 2.0, ISO/IEC CD

14772, August 1996.

(http://vrml.sgi.com/moving-worlds).

[22] Terri Watson. Application Design for Wireless Computing. In Workshop on Mobile

Computing Systems and Applications, Santa Cruz, December 1994.

(http://snapple.cs.washington.edu:600/wit/presentations.html).

37

