
EnvironRC: Integrating mobile communication and collaboration to offshore
engineering virtual reality applications

Bernardo Pedras, Alberto Raposo
Departamento de Informática, PUC-Rio

Rio de Janeiro, Brazil
bernspedras@gmail.com, abraposo@tecgraf.puc-rio.br

Ismael Santos
Cenpes, Petrobras

Rio de Janeiro, Brazil
ismaelh@petrobras.com.br

Abstract—Offshore Engineering visualization applications
are, in most cases, very complex and should display a lot of
data coming from very computational intensive numerical
simulations. To help analyze and better visualize the results,
3D visualization can be used in conjunction with a VR
environment. The main idea for this work began as we
realized two different demands that engineering applications
had when running on VR setups: firstly, a demand for
visualization support in the form of better navigation and
better data analysis capabilities. Secondly, a demand for
collaboration, due to the difficulties of coordinating a team
with one member using VR. To meet these demands, we
developed a Service Oriented Architecture (SOA) capable of
adding external communications to any application. Using
the added communications, we built an external
collaboration layer. We study the architecture of our
solution and how it could be implemented for any
application. Furthermore, we study the impact of our
solution when running an Offshore Engineering application
on VR setups with the support of mobile devices. Such
devices can be used to help navigate the virtual world or be
used as a second screen, helping visualize and manipulate
large sets of data in the form of tables or graphs. As our test
application, we used Environ, which is a VR application for
visualization of 3D models and simulations

Keywords--3D Interaction, immersive Environments,
Collaboration, mobile communication

I. INTRODUCTION

Offshore engineering (OE) visualization applications are, in
most cases, very complex and should display a lot of data coming
from very computational intensive numerical simulations. To
help analyze and better visualize the results, 3D visualization can
be used in conjunction with a Virtual Reality (VR) environment.
The main idea for this work began as we realized two different
demands that engineering applications had when running in VR
setups: demand for visualization support in the form of better
navigation and better data analysis capabilities and demand for
collaboration.

First, since the models being visualized originated from large
numerical simulations, we noticed the need for a better user-
interface to allow the user to visualize large amounts of data,
without disturbing the virtual world representation on the main
VR screen. Engineering data are mostly represented by large
tables of numbers and graphs, which are not suited for display in
VR environments.

Second, we realized that having an immersive VR
environment brought real benefits for the review process of large
simulations [1]. However, a problem remained; it was hard for
the user in the VR setup to communicate and make his/her
observations useful. A better way to collaborate and produce
useful data from the VR sessions was needed. A further
motivation for collaboration comes from the inherited multi-
disciplinary aspect of OE. To analyze the results, many different

specialists (mostly geographically separated) need to work
together on the same model.

Therefore, to solve these problems, we developed a Service
Oriented Architecture (SOA) capable of adding external
communication and collaboration capabilities to any application.
The idea behind our solutions is to enable collaboration-unaware
[2] [3] applications to collaborate with as little reworking of the
original application as possible. Collaboration-unaware
applications are originally developed to be single user
applications, but may be used collaboratively by means of an
external support system. This external support system may be an
application sharing system or a GUI event multiplexing system.
In both cases the applications do not explicitly support
collaboration; they are implemented as single user applications.
This is important since, in our case, the applications developed
for OE projects have this characteristic.

In addition, to solve the user-interface problem, we used the
added communication mechanism of the application to enable
real-time data visualization and manipulation with tablets and
smartphones. Such devices can be used to help navigate the
virtual world or be used as a second screen, helping visualize and
manipulate large sets of data in the form of tables or graphs.
Another big advantage that mobile devices bring to the
engineering applications is the capability of accessing the data in
remote locations, like on oil platforms or refineries, and so
allowing the field engineer to check the data or even change it on
the fly.

We have developed and tested the proposed architecture with
an application called EnvironRC (Environ Remote Control).
EnvironRC is an application that adds the benefits of integration
with mobile devices, visualization support and collaboration to
ENVIRON [4], a VR application for visualization of 3D models
and simulations. We opted to demonstrate the benefits of using
EnvironRC in VR session with an experiment. Furthermore, we
present a real world use of the collaboration aspect of EnvironRC
to help offshore engineers review simulation results.

Furthermore, we developed a generic and extensible version
of EnvrionRC, called AppRC [5]. AppRC is a framework that
can be extended to be used by any other application that wishes to
add external communication and collaboration functionalities,

II. RELATED WORK

VR visualization technologies enhance the content
knowledge within any engineering design activity. Used in
conjunction with collaboration, VR visualization provides
valuable insights for better Decision Support with risk mitigation.
While there are huge benefits of using virtual environments,
many problems arise when running complex applications in an
engineering virtual environment, especially applications that were
not built from the ground up with such environments in mind (as
is often the case).

There are many applications that utilize mobile devices to
enhance the VR experience. Most of them focus on implementing
efficient ways to navigate or to interact with the 3D world [6],
[7], [8], [9].

Most implementations of navigation functionalities in VR
systems rely on the VRPN (Virtual-Reality Peripheral Network)

2016 XVIII Symposium on Virtual and Augmented Reality

978-1-5090-4149-7/16 $31.00 © 2016 IEEE

DOI 10.1109/SVR.2016.17

37

[10], which is a device-independent and network-transparent
system for accessing virtual reality peripherals in VR
applications. VRPN provides a communication standard for
developers who want to utilize different sensors as inputs to their
application. Although the VRPN framework is widely adopted as
the communication channel for navigation input information, it
does not provide a good way to handle other kinds of
information, like symbolic input, large amount of data or more
complex data structures like photos or videos.

There are some proprietary mobile application development
systems that integrate a sort of framework to manage the
messages from the mobile application to a server application.
Flick [11], for example, provides a framework restricted for
testing and debugging the server-client communication. The
Maximo Integration Framework (MIF) [12] is defined as a
framework that provides web services and SOA technologies to
support application services and coordination between enterprise
systems such as synchronization and integration of data between
applications. It is a specific framework that handles data transfers
to IBM’s Maximo system. Although restricted to the Maximo
system, some solutions were developed to integrate the SOA
architecture of MIF with mobile devices [13], [14].

We are especially interested in the use of mobile devices to
aid the visualization of engineering data and simulations. Many
applications and simulators have been developed over the years
for traditional desktops and/or clusters. It is still unfeasible to run
such simulations or applications in a mobile device as a
standalone application because of performance issues, and even if
it were possible to run entire simulations on smart devices, it
wouldn’t be the best way to do it because all the generated data
must be stored and centralized in databases or servers, and it
wouldn’t be practical to transfer such amounts of data for each
simulation. So, mobile devices should be used to add their
benefits to an existing application or simulator, creating a
collaborative environment between the main application (running
all the heavy work) and different connected mobile devices. And
exactly at this point the main problem we try to address with our
proposal comes. How to build a collaborative environment
between an existing application and mobile devices with
minimum reworking of the existing application?

III. APPRC
As mentioned before, there are two main goals for this project.

First, we want to provide a better user interface for users in VR
environments. Second, we want them to be able to collaborate
with remote users and exchange engineering data in real time.

To achieve these goals, we developed a solution with the
following requirements in mind: i) The solution should be
generic and extensible to enable its use with other applications
with little extra work; ii) The solution should require minimum
reworking of the original application; iii) The solution should
add very low overhead, i.e., while running the original
application with the added benefits of our solution, there should
be very little performance impact; and iv) The solution should be
portable.

The only requirement we set on the user-application (in our
case, Environ), is that the application should have some way to
receive commands from an outside source. We left open what
exactly this command-passing mechanism is, since it depends
heavily on many technical aspects of the application, such as,
programing language, platform and internal architecture.

A. Architecture Overview
In this section, we present the architecture overview of the

generic AppRC solution. EnvironRC, the specific
implementation of AppRC for the Environ application follows
the same architecture and the specific details of its
implementation will be discussed later.

The goal of our architecture is to integrate external
communications and enable collaboration in a collaboration-
unaware application. Therefore, our architecture is resolved
around supporting many instances of the application running on
multiple machines and devices.

Our solution is divided in three main components: AppRC
Server, AppRC Client, and Mobile Application (Figure 1).

Figure 1: AppRC Architecture Overview.

AppRC Server works as the central HUB of all
communications. All users are required to communicate through
the Server. It also manages all collaboration aspects including
users and permissions. The server receives (via the Collaboration
BUS) all messages and routes it to the corresponding receivers.

AppRC Client works as a proxy of the main server running on
a different machine. It only passes the messages along to the
main server. For the Collaboration BUS, there is no distinction
between an instance of the application running on a same
machine or on a remote device.

Each application instance is both an Inbound and Outbound
Endpoint, capable of receiving and sending messages. The
Mobile Proxy works almost the same as an instance of the
application, with the important distinction of being exclusively
an Inbound Endpoint. The reason for this decision is so that the
mobile application can only request information it needs, and
does not have to always listen to incoming messages.

B. Use Scenarios
We studied two main use-scenarios to demonstrate the benefits
of our solution. We chose these scenarios as they represent real
world situations and reflect the benefits of adding our solution to
engineering applications running in VR setups. In each scenario,
we identify the main problem the application has when running
in VR and how our solution should solve it.

• Scenario 1 – Single Mobile / Multiple instances
• Scenario 2 – Multiple Mobile / Remote users

1) Single Mobile / Multiple instances
We built this scenario around the idea of having a

Powerwall setup. Powerwalls are typically very large displays
with massive resolution, and so, capable of displaying many
contents at the same time. As most applications were not built
with such large resolutions in mind, the most effective way to
use the benefits of a Powerwall visualization setup is to open
many instances of the application at the same time. Each
instance using a part of the full Powerwall screen enabling the
user to view all instances simultaneous side by side and compare
and analyze the results. Another instance of this use-scenario in
a VR environment is when the user has multiple VR applications
running in background, each of them with a different
visualization model. This typically happens in CAVE setups, as
each model has to be loaded and properly setup for visualization,
a multi-model visualization, where the user is able to change
between models by running multiple instances of the application
in background.

38

Figure 2: Single Mobile / Multiple instances
Many instances of the application running simultaneous on the

same computer bring new challenges. There is now a need to
coordinate the different instances of the application on top of
managing the collaboration and messages between them. It is
also important for the user to be able to broadcast messages to
all instances of the application.

In Figure 2 we can see how this scenario is represented using
our architecture. Here we need the AppRC Server to be running
with the collaboration BUS to manage the communication and
route the messages to the corresponding application instances.

2) Multiple Mobile / Remote users
This scenario represents the most complete use of our solution. It
encapsulates many different uses of the collaboration
infrastructure (Figure 3). It represents for instance the use of the
application for a presentation setting, where there are many
models being presented in the main screen and each viewer of
the presentation has a mobile device and can request on-demand
specific details of the main model.

Figure 3: Multiple mobile / remote users

Another use-scenario is during a review process of a model.
Sometimes not all the participants are co-located for the
presentation. This is especially interesting for offshore
engineering applications due to its inherited multi-disciplinary
aspect. To analyze the results, many different engineers (mostly
geographically separated) need to work together in the same
model. The main review process occurs in the main visualization
environments while remote users can join in and collaborate
with the working session.

Here we need the remote machine to run the AppRC Client
and connect it to the running session of the AppRC Server. The
connection of AppRC Client (running on a remote machine) and
AppRC Server (running on the main visualization machine) is
done through a direct socket connection. The remote user
running AppRC Client doesn’t affect the collaboration session.
For all collaboration participants, all other participants are
accessible through the same means (collaboration BUS).

3) Implementation
AppRC was developed in Java as a Netbeans Platform
application using Mule ESB [16]. It is designed to have a simple
user interface for basic monitoring and controlling different
communication channels.

Another important aspect of AppRC is its support for
managing multiple instances of the application running at the
same time. This functionality is very important when running an
application in very large displays for example, as it allows the
user to manipulate from a single source, multiple instances of the
application, providing an efficient way to compare simulation
results or data. To achieve this goal, we adopted the concept of

application instances session. Each session can run a single
instance of the application and the user can create and manage
multiple sessions.

The internal architecture of our solution uses the concept of
SOA in the form of Mule Enterprise Service Bus (ESB)
implementation. We use the benefits of SOA to build a
communication bus inside our framework so that the input
services can exchange message with the base application service.

AppRC supports four different communication channels (file,
socket, WebService and mobile service). Using Mule ESB
implementation, we defined two Mule flows. The first one,
called App Flow, handles mobile devices incoming messages.
The second one, called Mobile flow, handles all other incoming
messages (file, socket and WebService) – Figure 4.

Figure 4: AppRC with Mule ESB

Therefore, with Mule ESB, we were able to implement the
four command input channels. The simplest way to exchange
messages between two applications is via text files. Therefore,
we implemented this kind of interface in our solution, even if it
is not the most efficient way to exchange message, since both
applications have to be running on the same machine or have
access to a shared file system. We implemented the socket input
as a basic TCP socket where the server (AppRC) waits the
commands as serialized text bytes on a specific port and passes
the message over to the application. We opted for adding the
socket communication channel because of the wild spread use of
sockets and because of its simplicity. We also use the reference
Jersey RESTful (JAX-RS) implementation coupled with the
Mule ESB framework. The Mule ESB handles the incoming
messages through the web service in the form of flows.

The mobile channel was implemented the same way as the
normal web service with some adjustments to account for some
general mobile connectivity functionalities and the use of
Mobile Application Service extension point.

In order to keep AppRC generic and extensible, we decided to
simplify the work needed to integrate AppRC to a new
application and defined only two extension points (Figure 5) that
need to be addressed by the application developer.

On top of the four input channels, an adapter had to be
implemented to handle the communication between the ESB
(AppRC) and the application (Application Proxy). The problem
is that each application may export its functionality in a different
way. Environ, for example, supports LUA commands via a local
socket connection. However, other applications may use direct
command line calls, text file input or any kind of custom method
of receiving commands. Moreover, since these methods may
already be implemented in the application, we decided not to
arbitrary force the use of any method as to avoid having to
change any code in the application itself. Instead, we leave the
implementation of an Application Proxy class as an extension
point of AppRC, responsible for sending the message received
and processed by AppRC to the application.

39

Figure 5: Extension points overview

Another extension point we decided to include is the Mobile
Application Service. While developing a mobile application, it is
useful to have a middle layer of abstraction between the
responses from the application and the mobile application. In
this layer, from a single mobile command, the developer could,
for instance, request many commands from the application
organize the data and then send it back to the mobile app in a
way that is easy to process and display. By adding this extension
point, we are creating a business logic layer without modifying
the original application and keeping the mobile app development
simple. If, in the other hand, the application already has a
complete business logic or the mobile app already implements a
complete set of commands, this extension point can be left out
and no additional work is needed to integrate the mobile
functionality.

Figure 6: Basic AppRC GUI

4) GUI
In Figure 6 we present the basic interface. The left side shows

the connected mobile devices, in the middle section we can see
the contents of the four basic files that AppRC writes and reads.
It is possible for the user to write commands directly to input.txt
file and send it to the application. The right side shows the status
of each input channel and, in a second tab, the status of the
connected application instances. It is also able to run in the
background as not to disturb the main visualization.

IV. ENVIRONRC
EnvironRC is our specific use of the AppRC generic solution

for the Environ offshore engineering visualization application.
Environ [1] is a tool designed to allow visualization of massive
CAD models and engineering simulations both in desktop and
VR immersive environments. It is a system composed of a 3D
environment for real-time visualization and plug-ins to import
models from other applications, allowing users to view and
interact with different types of 3D data, such as refineries, oil
platforms, risers, pipelines and terrain data. It enables the user to
view the simulation in real-time as a 3D environment and
enables, at the same time, the user to view all the simulation data
and engineering information.

Environ was chosen as our test application because it is both a
virtual environment application and a complete offshore
engineering application, able to manipulate large amounts of
simulation data. Environ provides a full script interface using the

LUA language. With this script language, it is possible to
execute many complex operations inside Environ
programmatically. At the same time, it provides a perfect way to
send commands from an external application to Environ.

EnvironRC implements both extension points discussed in the
previous section.

To help the development process of the mobile App for
Environ, we created a custom Mobile Application Service to
handle high-level commands coming from the mobile device.
The mobile service is also able to do some logic depending on
the command. A good example of the benefits of using this
extension point is the handling of active selection of model
objects in Environ. We display in the mobile device interface a
list of selected objects. With many users using the system at
once, (many mobile devices at the same time for instance) it can
be a problem to maintain the current selected objects list updated
in all devices. So, we implemented as part of the Extension
Point, a layer of business logic that is in charge of keeping the
selection consistent across all connections. When there is a
request from a Mobile Device to get the selected elements, the
custom mobile service will not pass the command direct to the
application, instead it process the command internally and
responds accordingly.

The implementation of communication between EnvironRC
and Environ was done using a local socket connection. We had
to implement the framework Extension Point to send the LUA
commands to Environ using the socket structure. The
implementation of the socket connection was done in a separate
thread that keeps consuming the messages from environ and
passing it along to the AppRC collaboration structure. The
thread also consumes a message queue end sends the new
messages to Environ.

A. EnvironMobile
EnvironMobile is an IOS application developed mainly to help
the visualization process of complex offshore engineering
models in VR environments. It was developed with the
Objective C language as a hybrid application (IPad and IPhone).
It works as an extension of the main application, enabling the
user to setup parameters and view details of the main model
being visualized. EnvionMobile connects to environ using the
Mobile connection input channel of EnvironRC.

We defined and implemented seven base functionalities for
EnvironMobile:

• Configure visualization parameters
• Navigate the model structure
• Help navigate the virtual world
• View and manipulate engineering data
• Create and delete annotations
• Take snapshots of the scene
• Manipulate the collaboration sessions

In the next subsections, we will discuss the implementation of
these functionalities in further detail.

1) Visualization parameters
Being a complex application as it is, Environ can have many
parameters to setup depending on the kind of visualization the
user wants to use. These parameters range from simple
visualization tools like showing the ocean or terrain information,
to complex values tied in to the simulation, like forces applied to
risers or sea current values. As the user will probably need to
change the values and inspect different information during the
visualization, it was very important that these parameters be
made available to the mobile device in his or her hands.
Therefore, our first priority was to implement a complete set of
commands for visualization parameters and the interface to
manage them. (Figure 7 shows a sample of the Mobile
interface). We followed the standard settings interface of the
IOS platform.

40

Figure 7: Environ mobile visualization settings

The visualization parameters of Environ include settings of
the 3D scene, like skybox, ocean and terrain settings. We can
also set the camera and light settings of the visualization.
Another important set of visualization parameters are the VR
settings. These include stereoscopic 3D, multi-projection and
devices (like fly sticks) settings.

2) Navigate the model structure
The visualization scene of Environ is structured in a hierarchical
way, because for very complex scenes and simulations it
becomes harder to select a specific object in the 3D world. So,
having a tree like object hierarchical structure can help to select
and check more detailed information of a given object. However,
bringing up the objects tree in a context menu during a session in
an immersive environment like a CAVE can be distracting and
disturb the immersion. Thinking about that, we implemented a
way for the user to view the complete objects tree with the tablet
and to access the details, navigate to or even manipulate the data
of any object.

In Figure 8, we can see how the interface works. We present
the user with a list of all elements of the current hierarchical
level. The user can then tap the arrow on the far right side of the
element to navigate to its children or he/she can tap the element
to access some commands to be performed on that element, like:
navigate to the element, turn the element visualization to
invisible, clear the elements selection among other commands.

3) Navigate the virtual world
For the Environ application, only simple navigation methods
were implemented. The method mimics the use of navigation
with the keyboard (Figure 9). Although it might be a very
simplistic implementation of 3D world navigation, it can be of
much help to be able to come closer or move away from an
object using the mobile device. Environ has two types of 3D
world navigation paradigms; “Examine” and “Fly”. Using the
Examine mode, the user camera has a set point of view center
point, and he/she moves around this center point. It is very
useful when analyzing a specific point in the model. The other
mode is Fly, in which the controls work as if the user was flying
through the scene.

Figure 8: Manipulate the model structure

Figure 9: Virtual world navigation

Our communication and collaboration solution supports any
kind of navigation, including more complex implementations
using the internal sensors of the mobile device like
accelerometers and gyroscopes. However, it fell out of the scope
of our work and in our experience with EnvironRC in VR
Setups, the use of the simple provided controls in conjunction
with the ability to select any structure from the model and
directly navigate to it, although not optimal, proved very
effective in helping the visualization.

4) View and manipulate engineering data
When inside the VR environment, any kind of menu or big text
block viewed in the application disturbs the immersion. A
mobile device offers a second screen where we could display
many kinds of data like: large tables of numbers, graphs,
detailed information, etc.

We implemented a way for the user to request
engineering data detail of any object of the scene (Figure 10).
This feature proved the most useful when using the mobile
device in VR setups, as it helps the review process of an offshore
simulation when the user can see multiple data tables of the
specific simulation timestamp being presented in the main
visualization screen.

41

Figure 10: Manipulate engineering data

5) Manipulate Annotations
Virtual 3D annotations are a very useful feature of Environ.

They help the user understand details of the virtual model since
each annotation is always coupled to a specific part of the model
being visualized. All annotations can be seen in the mobile
device as a list. This is especially useful when the user needs to
setup a list of tasks to be done in a remote location. For example,
a user using the desktop application can create a sequence of
annotations, each one representing a task that needs to be done
in a specific part of the model. A second user in a remote
location (an oil platform for example) connected to the same
session, can see the annotations and their locations and perform
the tasks. He/she can even create new annotations or edit those
already present.

6) Take Snapshots
A useful feature is the ability to take snapshots of the current
simulation. It is a useful way to collaborate with remote users,
since they can receive images of the simulation model while on
the field. This can help the field engineer using the mobile
device identify and compare the simulation with the real world
engineering hardware.

A more complete implementation of this feature would
include not only the ability to take snapshots, but also the ability
to stream as video the content of the visualization directly to the
mobile device in real-time. However, to implement this
complete feature would require a lot of extra work and was left
outside the scope of the current work.

7) Manipulate the Collaboration Session
In order to manage the collaboration aspect of EnvironRC,

we implemented a special screen to manipulate the collaboration
session. Here the user can see the available applications to send
commands to, the number of other users in the session, create
new instances of the application, start broadcasting a message or
remove an application from the session.

V. RESULTS

In this section, we discuss two main results of EnvironRC.
First, we describe the experiment that was conducted with users
to determine the benefits of having a mobile device while using
a VR setup. Second, we present a real-world case of EnvironRC.

A. Controlled Experiment
To test the VR setup support, we decided to run an experiment

with users to help determine the impact on the immersion
experience while using a tablet connected to the main
visualization system.

We chose to perform an experiment because of the nature of
the problem we were trying to analyze. The user experience
when using a CAVE is subject to many different aspects, such

as, time needed to complete tasks, usability, user experience,
immersion perception, among others. By running a controlled
experiment, we will try to analyze qualitative and quantitative
aspects of this experience.

The objective of our experiment was both descriptive and
explanatory. We wanted to describe how the users interacted
with the system and what their thoughts were. At the same time,
we wanted to examine if the use of a tablet device in VR setups
had positive impact in the VR session, both in terms of time
needed to complete a task and user experience.

We recruited participants for the experiment that had
familiarity with computers, had experience with complex three
dimensional applications such as games and 3D modeling
software and had experience using VR setups. The decision to
recruit only users with experience in VR setups was made to
avoid large distinctions in execution time. VR setups can be very
confusing and take a large amount of time for a new user to get
used to. So, by having only experienced users, we can avoid
problems with training bias.

The experiment consisted of the users performing two tasks in
a CAVE VR setup. Both tasks were performed first with
Environ (without EnvironRC) and afterwards with EnvironRC.
To ensure that all users had the same experience with both
EnvironRC and Environ, we conducted a training session before
the experiment. In the training session, the users had unlimited
time to try both applications and ask questions.

To collect the data, we used different techniques: Pre-test
question form; Post-test question form; Time to perform each
task; and Semi-structured interview. The pre-test form was used
mainly to select the participants’ profile. Post-test question form
and the time to perform each task were used as a quantitative
measurement of each user performance and experience. The
semi-structured interview was designed to collect qualitative
information about the use of the system and to help describe the
experience in further detail.

The goal of our experiment was to analyze and determine the
benefits (if any) for the user experience of running Environ in a
VR session with and without our solution. For the experiment,
the users had to perform a series of tasks during a VR session in
two different conditions: first without our solution and then
using the mobile device connect to the Environ application
through EnvironRC. To complete the tasks without EnvironRC,
the participants were asked to use standard mouse and keyboard
inputs. This decision was made because although there are many
different devices to help navigate the 3D world, none of them
can help the user manipulate engineering data or use 2D menus
to configure the application. On top of that, most CAVEs setup
today use keyboard and mouse to perform these tasks, generally
by an user outside the immersive environment.

1) Experiment Preparation
We recruited fourteen participants, with ages between 26 and

45. All of them had experience with VR setups. Only 2 of the
participants had not used any kind of engineering applications in
VR, but had experience with 3D software like modelling tools
and games. All participants had at least a graduation degree in
the field of computer science and 78% had a postgraduate degree
in the field. There were thirteen males and one female
participant.

To test our solution, we used a visualization system of type
CAVE. A CAVE has the problems we wanted to address with
this dissertation. Some of these problems include: Users have to
be standing and to use 3D glasses; there are multiple projection
screens, making menu navigation hard, and large projection
screens, making texts harder to read.

One of the main problems engineering applications face when
running in VR setups is the difficulty to represent any kind of
2D menu navigation. This happens specially when trying to read
large amounts of data (as numbers or tables) or when trying to
navigate 2D menus to change any visualization parameters.

42

To study the impact of our solution when trying to solve these
problems, we defined two different tasks for the participants to
perform. One of them to study the impact when reading large
amounts of data and the second one was designed to study the
impact of changing visualization parameters. Another important
distinction between the two tasks is the fact that the first task
requires the participant only to read the values he/she sees in the
virtual world, while the second task requires the user to input
numerical values as parameters.

Task 1 – Reading engineering data
The goal of task 1 is to test the impact of having a mobile

device when trying to read engineering data values from a
specific object. The participant starts with a full visualization of
the offshore engineering model. The participant is asked to use
the object navigation interface of Environ to select a specific
object in the scene. Once selected, he/she should invoke the “go
to” command to go to the selected object and visualize it. After
that, the participant is instructed to read out loud the values of
three engineering parameters of the selected object.

Task 2 – Changing visualization parameters
Changing visualization parameters is a very common task

when using VR setups. Visualization parameters include:
graphic quality parameters, immersive system parameters,
stereoscopic 3D parameters and others. The goal of this task is to
change three visualization parameters:

1. Change the skybox from “color: black” to “sky:
twilight”.

2. Change the stereoscopic eye distance from 0,0175 to
0,02.

3. Change the distance to parallax zero from 1,0 to 0,9.
2) Experiment Execution

A pilot test of the experiment was conducted to validate the
experiment material, documents and process. Based on the
results of the pilot test, we decided to make a single adjustment
to the experiment. We decided to add a flat surface near the
CAVE setup with a mouse and keyboard. Before the pilot test,
we had decided that the participants would try to use the mouse
and keyboard while standing, but in most VR setups there is
often a support table nearby where the user can go to use mouse
and keyboard if needed. Therefore, we decided to leave the table
near the CAVE and the participant was free to use it to support
the mouse and keyboard if he/she so wanted.

The experiment was divided in seven steps:
1. Introduction to the study and pre-test question form
2. Reading of the short Environ and Environ Mobile

manuals
3. Training session with Environ and Environ Mobile on

Desktop
4. Reading of the Task description documents
5. Test execution
6. Post-test question form
7. Semi-structured interview

Before the experiment, the participant signed a consent form
which explains the purpose of the tests and guarantees the
reliability of the collected data. After that, the participants were
asked to fill in the pre-test question form to determine their
profile and their experience with both VR setups and
engineering applications.

After the pre-test form, users were given the short manual of
Environ and EnvironMobile. This document was designed to
teach the user how to use the applications to complete the tasks.
After reading the manual, the user was given free access to a

desktop computer running Environ and a tablet running
EnvironMobile. At this stage, the user was free to experiment
with both applications and to ask questions about how they
worked. There was no time limit for the training stage.

After the training stage, the user was asked to complete each
task twice, once using Environ and once using EnvironMobile
inside the CAVE setup. There, the user had to wear stereoscopic
3D glasses and stand up inside the CAVE. He/she was first
asked to complete both tasks without EnvironMobile. To do so,
the participant could use mouse and keyboard. After that, he/she
was asked to complete the same tasks using EnvironMobile. A
measurement of time spent in each task with each device was
taken.

Finally, after the execution of the tests, the participant was
asked to fill in the post-test question form. This form was used
as a tool to determine the user experience in the CAVE. Some
aspects we wanted to study with the post-test form were:
usability, how (or if) both solutions disturbed the immersion,
impact of 3D glasses while using a tablet and others. The
question form consists of eleven statements. We used a Likert
scale for each statement where 1 represents full disagreement
and 5 represented complete agreement.

At the end, a semi-structured interview was conducted in
order to determine how the participant felt about both ways of
completing the tasks. Furthermore, we used the semi-structured
interview to clarify the answers given by the participant in the
post-test form and ask for improvement suggestions.

3) Results Analysis
In this section, we present the main observations done while

running the experiment, as well as difficulties and suggestions
the participants had. First we analyze the time needed by each
participant to complete each task. The results can be seen in
Figure 11. As most users had experience with VR setups and
engineering applications, we could not observe any significant
improvement in the time needed to perform task 1. On the other
hand, we can observe that most users performed task 2 in
significant more time when using mouse and keyboard. The
different in results from task 1 and task 2 is most likely
explained duo to the fact that task 2 required the user to input
numerical values using the keyboard.

To further analyze and understand the results of the
experiment, we show the result of the post-test question form in
Figure 12. We can see that the users thought the task was easier
to complete using EnvironMobile in comparison with standard
input devices. (Q1 – Q4). During the semi-structured interview,
most users reported that using mouse and keyboard in a CAVE
was very unpractical and because of that, using a CAVE setup
alone was very hard, often requiring a second person to help
navigate the menus. These users thought that having a tablet
made it practical to complete the tasks in the CAVE alone.

A very common complaint during the interviews was that the
size of the text on the projection screen was very hard to read.
There are two main reasons for that. First, the projection screen
is very large and has a high resolution making the text very
small. Second, most stereoscopic 3D glasses work using some
kind of color filtering mechanism that makes the image darker,
and therefore harder to read. To further analyze the impact of 3D
glasses, we can see that most users thought the 3D glasses had a
small impact when using the tablet screen (Q9). One user did
complain that the colors on the tablet screen were not very clear
using the 3D glasses, but he mentioned it was of low impact for
his experience.

43

Figure 11: Time to complete tasks

Figure 12: Post-test results

Some users mentioned that the EnvironMobile interface could
be improved. One user suggested that the EnvironMobile
interface should try to mirror the main Environ application
perfectly. Furthermore, when asked about the impact the tablet
had on the immersion, almost all users said that having to look
away from the main projection screens to the 2D interface of the
tablet reduced the immersion, but was of a much lesser impact
than having to use mouse and keyboard. The results of Q6
further accentuate this difference, with most users agreeing that
the tablet did have a positive impact on the immersion
experience.

From the interviews, it became clear that although some users
could complete the task in similar times with or without our
solution, the use of keyboard and mouse did never offer a good
immersion experience.

B. Case Study
In this section, we will discuss a special use of EnvironRC

during the review process of a very large offshore engineering

project involving a BSR system (Riser sustaining buoy) for deep
see oil exploration. The main goal of the buoy is to alleviate the
stress on the risers induced by the movement of the platform.
Without the BSR all the risers would go from see floor all the
way to the platform, and they should be resistant enough to
support all the forces coming from the movement of the
platform. The platform suffers movement duo to the external
forces applied to it (current, wave, winds etc.). The BSR works
as a way to separate the movement of the platform from the long
risers’ lines – Figure 13.

Figure 13: Two BSR overview

The complete BSR Project took many years of study and
involved many areas of the offshore engineer field, making it a
very good example for our solution. There was a huge amount of
simulations done for every step of the project. These simulations
where divided in two main phases: installation phase and
operational phase. There were more than a thousand simulation
cases for each of the phases, involving every kind of failure or
condition.

The simulations are a very complex numerical computational
problem and have to run offline. Each simulation can be
visualized by Environ in VR setups of the company that
developed the project. The visualization in VR helped offshore
engineers during the review process and these visualizations of
big offshore engineering projects were the main motivation of
this work. One special case we would like to study in more
details is the review process of the BSR project that involved a
large amount of simulations and a large amount of engineers.

Because of the number of people present in the day of the
review, all the models were to be presented using a PowerWall
setup, with a supporting screen for presentation (Figure 14). All
offshore engineers were to present their results and show the
simulated models that had interesting details and facts that could
indicate some problems for the overall project.

Figure 14: VR setup at the company that
developed the project: a PowerWall and an
auxiliary screen.

44

The presenter (mostly offshore engineers) had a PowerPoint
presentation that would run on the second screen and the
simulation results would be presented at the main PowerWall
screen. The presenter could send commands and control the
simulation via the PowerPoint presentation as well as with an
IPad running EnvironMobile. A complete schematic of how our
solution was used to achieve this kind of integration and
collaboration can be seen in Figure 15.

For the review process of the BSR project, seven simulation
results were chosen to be presented. Since each simulation takes
a very long time to load using the visualization setup, we chose
to have all seven simulations loaded using different instances of
Environ and have EnvironRC managing them. In total, there
were eight instances of Environ connected to the EnvironRC
session, seven for each model and one with a general overview
model used only to explain the idea behind BSR.

Figure 15: EnvironRC in the BSR Review
process

The presentation PC had all the PowerPoints the presenters
were going to use. Each PowerPoint was previously setup to be
able to invoke EnvironScript to send a command to Environ. On
top of the integration with the PowerPoint PC, we had a mobile
device assisting the entire process, as seen in Figure 16. With the
mobile device, the presenter could, in real time, change the
visualization and navigate to a different spot in the scene. He
could also check engineering data of the model to better answer
the questions of the viewers. Using the already discussed
functionalities of EnvironMobile, the presenter was able to
control and communicate with all eight instances of the
application at the same time.

The PC running on the main visualization screen was a
custom build state of the art machine running a 32 core CPU
with two dedicated external NVDIA Quadro Plex graphic cards.
The presentation PC was a standard laptop since it was used only
to run PowerPoint and the mobile device used was an IPad 2. All
devices were connected to the same network via WiFi and we
achieved real time manipulation and collaboration.

Figure 16: Mobile in BSR review

The review process of BSR was a real world, heavy load test
case for our solution and we were able to handle all the

communication in a real time scenario and still add all the
benefits of having a collaborating system in an offshore
engineering project review in a VR environment.

The average response time of a request from the mobile
device to the main visualization application was of 0.67 seconds.
Nielsen [16] defined three main time limits for applications
responses. Our result stay within the second limit category
where the users has the impression that the computer is working
on the request but can still freely navigate the interface.

We performed tests of Environ running with and without
EnvironRC connected, but could not find any significant
performance difference. This probably happens because of the
nature of Environ (and engineering applications), the load of the
visualization and simulation part of Environ is much greater than
the load of the communications between applications, making the
performance difference negligible.

VI. CONCLUSION

Our goal with this work was to study the use of EnvironRC to
help offshore engineering applications run in VR environments.
On top of that we wanted to enable collaboration unaware
application to collaborate and exchange messages. As the result
of this work, we could demonstrate that EnvironRC brought real
benefits to offshore visualization applications running in VR
setups. The main benefits were that having a connected tablet
device when inside a CAVE setup enabled the users to
manipulate engineering data and configure the visualization
parameters. Furthermore, we showed that using a tablet had a
lesser negative impact to the immersion experience then
traditional input devices.

EnvironRC is in use as a way to enhance the experience of
Environ in many different kinds of virtual reality setups like a
CAVE and an L-shape display. EnvironRC is also in use with an
Ultra-HD display (20x HD) that, because of the very high
resolution, enables the use of multiple instances of Environ on
the same display with many users at the same time. Furthermore,
it enables the user of Environ to navigate the 3D world, review
engineering data, create 3D annotations or even take snapshot
pictures of the simulations from a mobile device.

Furthermore, AppRC was designed to be lightweight,
extensible, as well as flexible enough to accommodate the
different kinds of needs of any kind of application. AppRC
requires little development work in order to achieve the
integration. By implementing only two basic classes, and with
minimum change to the base application, it is possible for any
application to export its functionalities, not only to a mobile
device, but also to any other application using one of the four
available input channels.

We had success running EnvironRC in a collaborative setup,
but further studies are still needed. When adding collaboration
capabilities to an application, we add a large amount of new
ways to interact with the application and other users. A possible
future work is to conduct a more complete study with different
collaboration sessions and how much each session type benefits
the users.

Further studies not included this work involve the use of our
solution to integrate applications outside the field of offshore
engineering. The benefits of having collaborating applications in
VR Setups could be studied other kinds of applications outside
the scope of engineering. One field that could possibly be of
interest is medical applications. There are already many 3D
visualization applications in the field of medicine that could use
our solution to run different visualizations to compare data

45

REFERENCES

[1] I. H. F. Santos; A. B. Raposo and M. Gattass. A software

architecture for an engineering collaborative problem solving

environment. In 32nd Annual IEEE Software Engineering
Workshop. IEEE, 2008. pages 43-51

[2] W. Reinhard et al. CSCW Tools: Concepts and Architectures.

IEEE Computer, 27(5): 28-36, 1994.
[3] I. H. F. Santos; A. B. Raposo and M. Gattass. Finding Solutions for

Effective Collaboration in a Heterogeneous Industrial Scenario. In

7th International Conference on Computer Supported Cooperative
Work in Design - CSCWD 2002, pages74-79.

[4] A. B. Raposo et al. Environ: Integrating VR and CAD in

Engineering Projects. IEEE Computer Graphics & Applications,

29(6):91-95, 2009.

[5] B. F. V. Pedras, A. B. Raposo; I. H. F. Santos. AppRC: A

framework for integrating mobile communication to virtual reality

applications. In Proceedings of the 12th ACM SIGGRAPH
International Conference on Virtual-Reality Continuum and Its
Applications in Industry. ACM, 2013, pages 305-308.

[6] D. Medeiros et al. An interaction tool for immersive environments

using mobile devices. In XV Symposium on Virtual and Augmented
Reality (SVR), IEEE, 2013, pages 90-96.

[7] H. Noronha et al. Designing a mobile collaborative system for

navigating and reviewing oil industry cad models. In Proceedings
of the 7th Nordic Conference on Human-Computer Interaction:
Making Sense through Design-Industrial Experiences, NordChi,

2012.

[8] N. Katzakis; M. Hori; K Kiyokawa and H. Takemura. Smartphone

game controller. In Proceedings of the 74th HIS SigVR Workshop.

2011.

[9] M. P. Guimarães, B. Gnecco and M. K. Zuffo. Graphical

interaction devices for distributed virtual reality systems. In

Proceedings of the 2004 ACM SIGGRAPH international
conference on Virtual Reality continuum and its applications in
industry, ACM, pages 363–367.

[10] R. M. Taylor et al. VRPN: a device-independent, network-

transparent VR peripheral system. In Proceedings of the ACM
symposium on Virtual reality software and technology, ACM, 2001

pages 55-61.

[11] Flick Software, 2015. http://flicksoftware.com/flick-technologies/

flick-development-libraries/.

[12] Maximo, 2015. http://www-03.ibm.com/software/products/us/em

/maximoassetmanagement/

[13] Ezmaxmobile, 2015. http://ezmaxmobile.interprosoft.com/.

[14] Imaxeam, 2015. http://imaxeam.com/maxinterface-integration-tool.

[15] MULE ESB Framework, 2015. http://www.mulesoft.org/

documentation/display/current/Home.

[16] Jakob Nielsen. Usability engineering. Elsevier, 1994.

46

