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Abstract. Physical activity is an important part of the healthy development of
children, improving physical, social and emotional health. One of the main
challenges faced by physical educators is the assembling of a physical education
program that is compelling to all individuals in a diverse group. Recent
advances in Human Activity Recognition (HAR) methods and wearable tech-
nologies allow for accurate monitoring of activity levels and engagement in
physical activities. In this work, we present a platform for assessing the
engagement of participants in physical education activities, based on a wearable
IoT device, a machine learning HAR classifier and a comprehensive experiment
involving 14 diverse volunteers that resulted in about 1 million data samples.
Targeting at a replicable research, we provide full hardware information and
system source code.
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1 Introduction

Physical education and school sport (PESS) aims at (i) developing children’s cognitive
capacity and motor skills, (ii) teaching about health and the benefits of physical activity
and (iii) fostering emotional intelligence [1]. Recent research on successful PESS
programs shows a strong correlation between physical activity and learning perfor-
mance, school attendance and academic success of children and young people [2].
Bevans [3] discusses that an adequate exposure to PESS during school day increases
children energy expenditure and allow for the maintenance of a healthy weight, and [4]
suggests that physically active children have reduced chances of experiencing chronic
disease factors and becoming obese throughout adolescence. However, while studies
such as [5] consider that an adequate exposure to PESS for school-age children is at
least 60 min per day, other studies such as [6] and [7] point out that the average
physical activity level of children worldwide is low and decreasing, and there is a
correlated increase in childhood obesity.

This work addresses one of the main challenges of PESS, which is the engagement
of school-age children in the physical activities. By proposing a foot-based wearable
IoT device and a Human Activity Recognition (HAR) classifier that can assess the
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activity level of an individual during a planned physical activity, we aim at offering an
alternative for PESS teachers to appraise their programs and tailor them to meet the
needs of each class. The main contributions of this work are an experiment with 14
diverse individuals that resulted in about 1 million data samples for analysis and, above
all, a wearable IoT device and a HAR classifier that can assess the activity level of an
individual during a planned physical activity. The prototyping of the wearable IoT
device, sensors deployment and replication information are shown on section Building
the HAR Classifier, along with the details of the experiment conducted to develop the
activity model, collect ADL data and build the HAR classifier. Section Assessing
Activity Level shows the assessment of the activity level and discusses the results, and
Section Conclusion presents the findings and future work.

2 Literature Review

This section presents a literature review of HAR research based on feet movement and
posture information focused on health and sports activities.

2.1 Recognition of Common Movement Activities

Common movement activities recognition is the most common type of research found
in this literature review. Many works, such as [8], [9] and [10] rely on plantar FSR
pressure sensors to classify user activity according to a previously elaborated activity
model. Other works, such as [11] and [9], rely on inertial motion units (IMUs) located
on user’s feet for that purpose. Sensor fusion - FSRs and IMUs - is employed by works
such as [12], [13] and [14] achieving good overall results. Only a few of the surveyed
works used sensors other than ground contact force (GCF) sensors and IMUs, such as
infrared sensors [15] or capacitive sensing technology [16] and [17]. Some positioned
extra sensors in other places beyond the user’s feet, such as [18]. They all use very
similar activity models comprising sitting, standing, running, walking and slope-
walking activities, with the main difference being the machine learning algorithms
applied and the context of the experiments.

2.2 Recognition of Specific Activities

Many of the surveyed studies were conducted in the recognition of activities related to
healthcare well-being, such as (i) the research presented in [19], that aims at recog-
nizing caregiver’s patient handling activities (PHA) and movement activities to help
prevent overexertion injuries, (ii) the work presented in [20], that measures activity in
people with stroke, (iii) the work presented in [21], that recognizes activities and
postures to provide behavioral feedback to patients recovering from a stroke, and
(iv) the research proposed by [22], in which researchers present a pair of shoes that
offer low-cost balance monitoring outside of laboratory environments and uses features
identified by geriatric motion study experts. The lightweight smart shoes are based on
the MicroLEAP wireless sensor platform [23], that uses an IMU and FSR pressure
sensors embedded inside each insole for data acquisition.
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Some other shoe-based wireless sensor platforms, such as the SmartStep [24], were
used by many different healthcare related works. In [25], the former platform was used
to develop an Android application to capture data from the wearable device and pro-
vide real time recognition of a small set of activities. In [26] and [27], the SmartShoe
platform is used for energy expenditure estimation after the classification of the
activities performed by the user, and in [28] it is further used to predict body weight.
The same platform is then used by [29] and [30] to identify activity levels and steps in
people with stroke.

2.3 Literature Review Discussion

The measuring of GCFs is the most prevalent approach used by the surveyed works for
the task of recognizing user activity, followed using IMUs and sensor fusion. No work
thoroughly addresses the challenge of adequately positioning the GCF sensors,
although studies such as [14] and [19] recognize that this is a very important factor for
HAR. Considering the wearable devices presented in the literature, two characteristics
impair their reproducibility: (i) the lack of information about sensor positioning and
orientation and the (ii) absence of sensor model information or specification. Most of
the works analyzed provided detailed information regarding the activity model of its
HAR classifiers, but few studies detailed the validation techniques used for building the
activity classifiers. The success rate of activities classification, with one notable
exception, fell into the 80%—100% range. It was also observed that although most
works informed the number of participants, only a few informed the dataset size.
Detailed knowledge of datasets is especially important to assess (i) works that use
similar activity models and sensor placement and (ii) machine learning classifiers
results. As discussed in [18], dataset disclosure is crucial for benchmarking purposes,
given that classification algorithms rely heavily on datasets.

The prevailing suggestions for future works and contribution found in the literature
follows the conclusion of the review presented in [31]: (i) increase the data set through
longer data collection intervals and the diversification of participant’s profiles, (ii) im-
prove the classifier algorithms and (iii) adapt the activity model to a specific challenge,
such as helping patients to avoid falls.

3 Building the HAR Classifier

On this Section, we describe the stages followed to develop the HAR classifier —
prototyping the wearable device, conducting the experiment and building and vali-
dating the model.

The wearable device comprises two components: an insole that houses the plantar
pressure sensors and an external protective case that houses the microcontroller and the
other sensors. The insole employs four GCF sensors for monitoring plantar pressure
distribution, following the recommendations found in works such as [14], in addition to
the lessons learned from the prototype presented in [31]. The main component of the
external protective case is a WIFI enabled microcontroller that collects and transmits
sensor data to the database. The ABS 3D printed external protective case also holds the
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accelerometer, gyroscope, magnetometer, barometer and range finder sensors. The
prototype is powered by a 2,200 mAh lithium ion battery pack.

The first experiment, aimed at building the HAR classifier, was conducted with
twelve volunteers carefully selected for their diverse characteristics. We collected 12 h
of activity data - 1 h of feet posture and movement data from each volunteer. The
activity model we developed for the experiment comprises 10 activities: walking
straight (2 km/h), walking slope up (2 km/h), walking slope down (2 km/h), slow
jogging (6 km/h), slow jogging slope up (6 km/h), slow jogging slope down (6 km/h),
hopping, ascending stairs, descending stairs and sitting. The experiment was conducted
in 4 distinct sessions, where participants performed a subset of the planned activities.
During the data acquisition stage, a stream of raw, unprocessed signals of the combined
sensors was stored in the microcontroller in JSON format and periodically sent to the
application server. The same data acquisition, data processing, feature extraction and
feature selection pipeline proposed in [31] was employed. Different strategies were then
experimented to build the classifier, and the Random Forest Algorithm with Leave-one-
out Cross Validation was selected for classification achieving an average accuracy of
91.26%.

In the second experiment, our goal was to use the prototyped wearable IoT device
and the HAR classifier to assess activity level of different individuals during a planned
physical activity - as a proof of concept that both could be used for investigating
engagement in PESS programs. Considering the most commonly practiced PESS
activities of country in which the study was conducted - soccer, basketball and vol-
leyball -, basketball was chosen to avoid exposing the foot-based device to direct
physical contact in the case of football or falls to ground in the case of volleyball. Two
volunteers were selected for this experiment, both without professional experience in
basketball. All sessions were performed on a basketball inside a private condominium.
The experiment was conducted in one session that lasted for 10 min, and data col-
lecting followed the first experiment model. The two participants were asked to play
against each other in a friendly game, without any reward for the winner.

This activity level of both participants were successfully assessed, even when we
account for the error of the classifier. This result indicates that both the wearable [oT
device and the HAR classifier can be used to measure activity levels of individuals and
groups of individuals during physical activities. Those activity levels can be used by a
qualified PESS teacher to (i) understand how an individual responds to an activity or
PESS program when compared to other individuals or to his own past records,
(ii) assess how a group of individuals - i.e. a class - responds to a particular activity or
PESS program when compared to other groups, thus allowing for continuous improved
based on this real time feedback and (iii) experiment on different PESS programs with
the support of quantitative data.

4 Conclusion

In this work, we conducted two experiments: (i) the first with 12 volunteers, to evaluate
the recognition of 10 different activity classes through a machine learning HAR clas-
sifier based on feet movement and posture information and (ii) the second with 2
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volunteers, as a proof of concept of an alternative to investigate the engagement of
individuals in PESS and validate the feasibility of our model. We were also able to
expand the activity model by more than 65% - when comparing to the 6-activity classes
model presented in [31] - with a drop of only 2.12% in the overall accuracy. This result
suggests that the proposed wearable IoT prototype can be used for further investigation
of HAR-related challenges and employed by other researchers in PESS studies.

Currently, we are employing the proposed wearable 10T device prototype in a study
that aims to assess group and individual engagement in basketball PESS activities at a
technical high school. We are now performing tests and reworking the protective case
to allow for the experiment to commence, since the original case was not resilient
enough to be used in prolonged games.
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