
Raposo, A. B., & Fuks, H.; Defining Task Interdependencies and Coordination Mechanisms for
Collaborative Systems, in: Blay- Fornarino, M., Pinna-Dery, A. M., Schmidt, K. & Zaraté, P.; Cooperative
Systems Design (vol 74 of Frontiers in Artificial Intelligence and Applications), pp 88-103, ISBN 1-
58603-244-5 IOS Press, Amsterdam, 2002

Defining Task Interdependencies and
Coordination Mechanisms for

Collaborative Systems

abr
Compu

hug
Software Eng

Comp
R.

1. Introdu

In order t
Communic
understand
objects, e
harmoniou
(communic
associated

The pre
be defined
In this bro
defined as
work” [4].
the group
distribution
below) of t

Coordin
activities p
Alberto B. RAPOSO
aposo@tecgraf.puc-rio.br
ter Graphics Group (Tecgraf)

uter Science Department – Catholic University of
 Marquês de São Vicente, 225 – Rio de Janeiro, R

Abstract. This paper addresses the issue of coordination
matter to the specification of activities in collaborative syst
described as a set of interdependent tasks. In order to specify
an extensible model encompassing a set of temporal and
relations is initially presented. Then, Petri Nets are u
coordination mechanisms for those interdependencies. The s
and interdependencies/coordination mechanisms allows
different coordination policies in the same collaborative sy
the coordination mechanisms. Moreover, the coordinatio
related interdependencies, are generic and may be reused
systems.

Keywords. CSCW, Coordination, Petri Nets, Synchronizatio

ction

o work collaboratively, people need to share
ation, although vital, is not enough; “it takes
ings” [1]. This notion of shared workspace (inc
tc.) is called cooperation. To cooperate, how
sly, avoiding conflicting or repetitive actions
ation, cooperation and coordination) constit
with collaboration [2], [3].
sent work treats one of those aspects – coordinatio
as the activities responsible to ensure the effective
ad sense, coordination is a synonym of what has
 “a set of activities required to manage the dis
 Among the activities of articulation work, the ide
work, the mapping of these objectives into tasks,
 of tasks among them, and the coordination (in a
asks execution can be mentioned.
ation, in a narrow definition, is “the act of manag
erformed to achieve a goal” [5]. In this sense, coo
Hugo FUKS
o@inf.puc-rio.br
ineering Laboratory (LES)
Rio de Janeiro (PUC-Rio)
J, Brazil – 22453-900

, which is an essential
ems. An activity can be
 task interdependencies,
 resource management

sed to formally model
eparation between tasks
for the deployment of
stem by only changing

n mechanisms, like the
in several collaborative

n, System Design.

information (communication).
shared space to create shared
luding user awareness, shared
ever, people need to work

(coordination). These aspects
ute a threesome frequently

n, which in a broad sense may
ness of the collaborative work.
been called articulation work,
tributed nature of cooperative
ntification of the objectives of

 the participants’ selection, the
narrow sense, as it will be seen

ing interdependencies between
rdination is the most important

part of the articulation work because it represents the dynamic aspect of articulation,
demanding renegotiation almost continuously during a collaborative effort.

Coordination, in its broad definition, is essential to any kind of collaboration. In spite of
that, in its narrowest definition, coordination does not need to appear explicitly in some
kinds of collaborative activities – called loosely integrated collaborative activities – such as
those realized by means of chats or audio/videoconferences. These activities are deeply
associated with social relations and generally are well coordinated by the valid “social
protocol,” which is characterized by the absence of any explicit coordination mechanism
among the activities, trusting users’ abilities to mediate interactions (the coordination is
culturally established and strongly dependent on mutual awareness).

On the other hand, there is a large group of activities (tightly integrated collaborative
activities) that require sophisticated coordination mechanisms in order to be efficiently
supported by computer systems. In this kind of activity, tasks depend on one another to
start, to be performed, and/or to end. Examples of tightly integrated activities may be found
in workflow procedures, learningware, collaborative authoring, multi-user computer games,
among others.

In this context, this paper introduces a model for the definition of generic
interdependencies that occur between tasks in tightly integrated collaborative activities and
proposes Petri Net-based coordination mechanisms to handle such interdependencies. The
coordination model encompasses temporal and resource-related interdependencies, which
have a direct mapping to the Petri Net-based coordination mechanisms.

In the sequence, several aspects related to tasks interdependencies are discussed. Section
3 introduces the coordination mechanisms for those interdependencies, also showing some
examples of use. Then, in Section 4, a brief comparison with related work is presented.
Finally there are conclusions and suggestions for future research.

2. The Coordination Model: Task Interdependencies

In the context of this work, a collaborative activity is defined as a coordinated set of tasks
realized by multiple actors in order to achieve a common goal. Thus, a task, either atomic
or expressed as a group of subtasks, is one of the building blocks of any collaborative
activity. A group of subtasks could be considered to be a task when it presents no external
interdependencies, that is, no interdependencies with another task that does not belong to
the group. This definition of task enables the modeling of collaborative activities using
several abstraction levels (see Figure 1), which facilitates the coordination specification and
management.

Interdependency is a key concept in the coordination theory – if there are no
dependencies between tasks to be performed in a collaborative effort, there is nothing to
coordinate [6]. The approach task/interdependency or, more specifically, the clear
separation between “articulation work, i.e., the work devoted to activity coordination and
coordinated work, i.e., the work devoted to their articulated execution in the target domain”
[7] is a step toward giving flexibility to coordination mechanisms, which is crucial to
further use of this kind of mechanism.

One of the advantages of the separation task/interdependency is the possibility of
altering coordination policies by simply altering the coordination mechanisms for the
interdependencies, without the necessity of altering the core of the collaborative system.
Additionally, interdependencies and their coordination mechanisms may be reused. It is
possible to characterize different kinds of interdependencies and identify the coordination
mechanisms to manage them, creating a set of interdependencies and respective

task

task

Collaborative Activity high-level task /
low-level collaborative activity

task

task

task

interdependency

Figure 1: Hierarchical model of tasks and collaborative activities.

coordination mechanisms capable of encompassing a wide range of collaborative
applications [6].

In this section, a generic set of interdependencies that occur between tasks in
collaborative activities is defined. Then, in Section 3, coordination mechanisms to control
those dependencies are proposed.

2.1 Basic Temporal Interdependencies

Temporal interdependencies establish the relative order of execution between a pair of
tasks. The set of temporal interdependencies of the proposed model is based on temporal
relations defined by J. F. Allen [8]. He proved that there is a set of primitive and mutually
exclusive relations that could be applied over time intervals (i.e., any pair of time intervals
are necessarily related by one and only one of Allen’s relations).

A time interval is characterized by two events, which in turn are associated to time
instants. The first event is the starting (initial) time of an interval A, denoted here ia. The
other event is the ending (final) time of the same interval, denoted fa, always with ia < fa.
According to Allen, the set of seven primitive relations shown in Figure 2 may maintain
temporal information considering any pair of time intervals A and B (if one considers the
inverse relations, then 13 relations can be defined, because the inverse of equals is the
equals relation itself).

Based on the relations of Figure 2, a set of axioms is defined to create a temporal logic.
For example, there are axioms to prove the mutual exclusion and the exhaustivity of the
basic relations and others to define transitivity relations, e.g., if A during B and B before C,
then it is inferred that A before C [9].

The fact of being applied over time intervals (and not over time instants) made the above
relations suited for task coordination purposes, because tasks are generally non-
instantaneous operations. The adaptation of Allen's primitives to the context of
collaborative activities takes into account that any task T will take some time (from i to f) to
be performed.

Nevertheless, Allen’s temporal logic is defined in a context where it is essential to have
properties such as the definition of a minimal set of basic relations, the mutual exclusion

time

A equals B A starts B A finishes B A meets B A overlaps B A during B A before B

A A A A A A A

Figure 2: Allen’s primitive relations between time intervals A and B.

B B B B B B B

fa < ib ia > ib
and

fa < fb

ia = ib
and

fa = fb

ia = ib
and

fa < fb

ia > ib
and

fa = fb

fa = ib

ia < ib and
ib < fa and

 fa < fb

among these relations and the possibility to make inferences over them. Temporal
interdependencies between collaborative tasks, on the other hand, are inserted in a different
context. What really matters here is the management of the interdependencies and the
proper understanding by groupware designers.

Another drawback of Allen’s relation is that they are merely descriptive, not expressing
causal or functional relations between intervals [10]. For example, if tasks A and B are
related by the equals temporal interdependency, what should the coordination mechanism
do when task A is ready to begin, but not task B? Should it block the execution of task A
until task B is ready, or should it force the start of task B to guarantee that the
interdependency will be respected? In a different situation, if it is said that task A occurs
before task B, what should be done when task B is ready but not task A? Should the
coordination mechanism block task B until the end of task A, or should it allow the
execution of task B, blocking future executions of task A (which would violate the
relation)?

For all of these reasons, it was necessary to make some adaptations to Allen’s basic
relations. More than answering questions such as the ones stated above, the goal of the
proposed extensions is to offer a larger set of possibilities to create coordination
mechanisms that could handle many different situations. The idea is to accept Allen’s seven
primitives as the basic interdependencies and to provide a list of extensions, which may be
viewed as specializations of them.

2.2 Active and Passive Interdependencies

The merely descriptive characteristic of Allen’s temporal relations allows for different
interpretations of a single interdependency. Consider, for instance, that two tasks, Ta and
Tb are related by the interdependency Ta equals Tb. This construct establishes that the two
specified tasks must be executed simultaneously. In the coordination context, this can be
interpreted in two different ways. In the first sense, denoted as the active interpretation, this
relation expresses that the beginning of one task should start another task; similarly, the end
of one of the tasks should conclude the other task. Consider a situation in which one task is
“to start a discussion session” and the other task is “to record an ongoing discussion
session.” From the coordination point of view, this “active equals” relationship between
these two tasks would simply indicate that the second task (record the session) should
follow the execution of the first task. However, a problem to proceed with the session
recording would not invalidate the discussion session itself.

The second possible interpretation for any coordination mechanism is denoted as the
passive interpretation. In this case, the coordination mechanism expresses a set of

conditions that should be obeyed in order to carry out the activity. Considering the same
example as above, this would be the case whenever the session recording must be ready
before the start of the discussion. Thus, a problem to record the session would delay the
beginning of the discussion session until the problem is solved.

In order to deal both with active and passive interpretations, two operators were defined:
enables and forces. The enables operator represents the passive interpretation, while forces
represents the active one. These operations may be applied on the initial and final instants
of each interdependent task. Additionally, these extreme points have two states, ready and
concluded, indicating, respectively, that the task is ready to start (or finish) and that it has
already started (or finished). These states are used in the first operand, indicating that it will
enable or force the second operand before (ready) or after (concluded) its own execution.

Consider, for example, two tasks Ta and Tb, with initial and final points ia, ib, fa and fb.
The interdependency Ta equals Tb may be extended into several interpretations.

For the simultaneous beginning:

ia (ready) enables ib AND ib (ready) enables ia – this statement indicates the passive
situation, in which the tasks will start their execution only when both are ready (i.e.,
Tb will be enabled to start only when Ta is ready to start, and vice-versa), but neither
will force the execution of the other.

ia (ready) forces ib – in this situation, when Ta is ready to begin, Tb is forced to start,
indicating a master/slave active interdependency (similarly, Tb could be considered
the master if ib (ready) forces ia).

ia (ready) forces ib AND ib (ready) forces ia – active interdependency with no master
(the beginning of each task will force the beginning of the other).

ia (ready) forces ib AND ib (ready) enables ia – Ta is the master, forcing the beginning
of Tb, but Ta will only be started when Tb is ready (returning to the discussion session
example, this situation indicates that the beginning of the section – Ta – would force
the recording task, but if there is a problem with the recorder, the session will not
start).

Similar interpretations are applied to the simultaneous end of both tasks:

fa (ready) enables fb AND fb (ready) enables fa – passive situation. Tasks will finish their
execution only when both are ready to finish, but neither will force the end of the
other.

fa (ready) forces fb – when Ta is ready to finish, Tb is also forced to finish
(master/slave).

fa (ready) forces fb AND fb (ready) forces fa – active interdependency with no master.
fa (ready) forces fb AND fb (ready) enables fa – Ta is the master, but has to wait until Tb

is ready to finish.

Thus, interdependency Ta equals Tb may be composed of any combination of the above
simultaneous beginning and end situations (for example, it could have a master/slave
beginning and a passive end).

The interdependency Ta starts Tb has the same interpretations than equals for the
simultaneous beginning of both tasks. Regarding the end of the tasks, the original relation
imposes that Ta finishes before Tb, which is represented by fa (concluded) enables fb (the
end of Tb will be enabled only after the end of Ta, as indicated by the concluded state of fa).
However, it is not always interesting to impose any restriction to the end of tasks that have
started together. In this case, it is possible to relax the original relation simply not including
any relation for the ends of the tasks.

For the simultaneous end of the tasks, interdependency Ta finishes Tb has the same
interpretations as equals. For the beginning of the tasks, it is necessary to impose at least

the following restrictions, ia (concluded) enables fb AND ib (concluded) enables fa. These
restrictions are necessary to guarantee that a task will only be ready to finish when the other
has already started (otherwise, in the active interpretation, a task could force the end of a
task that has not started). This situation does not make any assumption about which task
will start before (relaxing Allen’s original relation). To follow the restriction of the original
relation, imposing that Ta starts after Tb, it is necessary to add the statement ib (concluded)
enables ia.

The interdependency Ta meets Tb may have the following interpretations:

ib (ready) enables fa AND fa (concluded) forces ib – passive situation. Ta will only be
able to finish when Tb is ready to start, and the end of Ta forces the beginning of Tb,
in order to respect the interdependency.

fa (concluded) forces ib – active situation where Ta is the master. The difference with the
previous situation is that the end of Ta does not have to wait until Tb is ready to
begin.

ib (ready) forces fa – active situation where Tb is the master. When it is ready to begin,
Ta is forced to finish.

fa (concluded) forces ib AND ib (ready) forces fa – active situation with no specific
master.

The interdependency Ta overlaps Tb has the following statement for its passive
interpretation, ia (concluded) enables ib AND ib (concluded) enables fa AND fa (concluded)
enables fb. It is possible to relax the original relation removing, for example, the last part of
the previous statement (in this case, it would not matter which task finishes first). An active
interpretation of this interdependency could be fa (ready) forces ib, indicating that Tb will be
forced to start when Ta wants to finish.

Ta during Tb may have the following interpretations:

ib (concluded) enables ia AND fa (concluded) enables fb – passive situation.
fb (ready) forces ia AND fa (concluded) enables fb – in this case, Tb is the master, forcing

the execution of Ta before the master’s end.
ia (ready) forces ib AND ib (concluded) enables ia AND fa (concluded) enables fb – Ta is

the master, forcing the start of Tb when the master is ready to execute.

Finally, Ta before Tb allows for a single passive interpretation, fa (concluded) enables ib.
An active interpretation is not possible considering just the initial and final instants of both
tasks, because that interdependency imposes an interval between both tasks (otherwise, it
becomes the meets interdependency). The way to create an active interpretation for this
interdependency is by defining a delay parameter for the forces operator, such as in the
statement fa (concluded) forces[5s] ib, indicating that Tb will be forced to start 5 seconds
after Ta.

The interpretations presented in this section do not claim to be exhaustive, but show the
large number of possibilities that arise when considering the passive and active
interpretations of temporal interdependencies.

2.3 Interdependencies Allowing a Variable Number of Executions

In spite of the operators enables and forces created to adapt Allen’s relations for active and
passive coordination interpretations, there are undefined situations remaining. Such a
situation occurs, for example, in Ta before Tb. After Ta and Tb have been finished, how
should the coordination mechanism proceed if Tb wants to start again? Should it allows its
execution, since Ta has already been executed (one to many relationship), or should it
makes Tb wait until Ta is executed again (one to one relationship)? A similar doubt arises

for Ta during Tb, i.e., how many times Ta is allowed to execute during a single execution
of Tb?

In order to deal with such situations, it was necessary to include an optional parameter
for the enables operator. This parameter indicates the number of times a condition (first
operand) enables the event (second operand).

For example, to define that Ta during Tb allows the maximum of two executions of Ta
for each execution of Tb, the following statements are used ib (concluded) enables[2] ia
AND fa (concluded) enables fb. A similar situation occurs for Ta before Tb, as illustrated by
the statement fa (concluded) enables[3] ib, indicating that, after each execution of Ta, Tb is
allowed to execute up to three times. It is also possible to define that there is no restriction
on the number of times a task may be executed after or during another (equivalent to define
the parameter as infinite).

2.4 Blocking Interdependencies

In order to enhance the flexibility of the model, it is also necessary to create the blocks and
unblocks operators that, respectively disable and re-enable the execution of an event
(second operand) when the state of the first operand is reached. The use of these operators,
for example, allows for a new interpretation of Ta before Tb:

ib (concluded) blocks ia – in this case, there is a restriction in the execution of Ta, which
may not be executed anymore if Tb has already started its execution. There is no
restriction on the execution of Tb (Tb does not have to wait for the execution of Ta, as
would happen with the situation given by fa (concluded) enables ib).

The blocking situations should be carefully used, since they could create deadlocks.

2.5 Resource Management Interdependencies

According to the coordination model by Ellis and Wainer [11], there are two levels of
coordination, one related to the activity level (temporal – the sequencing of tasks that make
up an activity) and the other related to object level (resource – “how the system deals with
multiple participants’ sequential or simultaneous access to some set of objects”).

Resource-related interdependencies may be represented by combinations of temporal
relations. For example, if two tasks, Ta and Tb, may not use the same resource
simultaneously, it is possible to define a “not parallel” dependency as the following
statement, ia (ready) blocks ib AND fa (concluded) unblocks ib AND ib (ready) blocks ia AND
fb (concluded) unblocks ia. However, besides being prone to deadlocks, this possibility
ignores the notion of resource, which is quite important in the context of collaborative
activities. Therefore, it is not sufficient to treat the problem of task interdependencies as a
temporal logic problem. Moreover, considering resource management dependencies
independently of temporal ones, a more flexible model is created, allowing the designer to
deal with each kind of dependency separately.

Resource management interdependencies in the proposed model are complementary to
temporal ones and may be used in parallel to them. This kind of interdependency deals with
the distribution of resources among the tasks. Three basic resource management
dependencies were defined elsewhere [12].

Sharing – a limited number of resources must be shared among several tasks.
Simultaneity – a resource is available only if a certain number of tasks request it

simultaneously. It represents, for instance, a machine that may only be used with more

than one operator.
Volatility – indicates whether, after the use, the resource is available again. For

example, a printer is a non-volatile resource, while a sheet of paper is volatile.

Each of the above interdependencies requires parameters indicating the number of
resources to be shared, the number of tasks that must request a resource simultaneously
and/or the number of times a resource may be used (volatility).

3. Coordination Mechanisms

Some conclusions that can be drawn from what has been presented in the previous section
are i) a simple group of seven temporal relations is exploded into numerous coordination
situations that should be correctly treated by the coordination mechanisms of a
collaborative system; ii) although encompassed by temporal interdependencies, resource
management ones also are necessary and iii) instead of defining coordination mechanisms
for each interpretation of interdependencies, it is necessary to propose a direct mapping to
construct the adequate mechanisms from the directives presented in the previous section.

In this section the last issue cited above is addressed by means of the definition of a
model for the construction of coordination mechanisms based on Petri Nets (PNs). The
choice for PNs as the modeling tool is justified because they are a well-established theory
(there are numerous applications and techniques available) and can capture some of the
main features of a collaborative environment, such as non-determinism, concurrency and
synchronization of asynchronous processes. Moreover, PNs accommodate models at
different abstraction levels and are amenable both to simulation and formal verification. In
the following some PN fundamentals are briefly overviewed, then the coordination
mechanisms are presented.

3.1 Petri Nets Fundamentals

PNs [13], [14] are a modeling tool applicable to a variety of fields and systems, specially
suited for systems with concurrency, synchronization and event conflicts. Formally, a PN
can be defined as a 5-tuple (P, T, F, w, M0), where: P = {P1, ..., Pm} is a finite set of places;
T = {t1, ..., tn} is a finite set of transitions; F ⊆ (P × T) ∪ (T × P) is a set of arcs; w: F →
{1, 2, ...} is a weight function; M0: P → {0, 1, 2, ...} is the initial marking; with (P ∩ T) = ∅
and (P ∪ T) ≠ ∅.

In a PN model, states are associated with places and tokens, and events with transitions.
A transition t is said to be enabled if each input place Pi ∈ •t is marked with at least w(Pi ,
t), which is the weight of the arc between Pi and t. It is also possible to define inhibitor arcs
connecting places to transitions. In this case, the transition is enabled only if the places of
origin are empty. Once enabled, a transition will fire when its associated event occurs.
Firing transition t, w(Pi , t) tokens are removed from each input place Pi and w(t, Po) tokens
are added to each output place Po ∈ t•. Here, •t and t• means, respectively, the set of input
and output places of transition t.

A useful notation for PNs is the graphical notation (Figure 3) which is going to be used
in the examples throughout this paper. In this notation, circles represent places, rectangles
represent transitions, dots represent tokens and arrows represent the arcs (inhibitor arcs are
represented with a circle on the edge), with weights above. By definition, an unlabeled arc
has weight 1.

In the PN of Figure 3, only transition t2 is enabled; t1 is not enabled because it would
require two tokens in P1 to fire, since w(P1, t1) = 2; t3 is not enabled because of the

P1

P2

P3

P4

t1

t2

2

t3
P4

Figure 3: Example of the graphical notation of PNs.

inhibitor arc from P3 (this place would have to be empty to enable t3). When t2 is fired, the
tokens in P2 and P3 are removed and P4 receives one token. Note that the number of
tokens in a PN is not necessarily conserved.

3.2 Petri Nets-Based Coordination Mechanisms

In the proposed scheme, the design of a collaborative environment is divided into three
distinct hierarchical levels, workflow, coordination and execution (Figure 4). In the
workflow level, each participant's behavior is modeled separately, establishing the
interdependencies between tasks of the same participant or those of different ones. The
coordination level is built under the workflow level by the expansion of interdependent
tasks according to a PN-based model and the insertion of correspondent coordination
mechanisms between them. The environment model is simulated and analyzed at this level.
The execution level deals with the actual execution of tasks in the system.

During the passage from the workflow to the coordination level, each task that has an
interdependency with another is expanded in the subnet presented in Figure 5. In this
model, events i and f (start and end of the task) are represented as transitions, while states
ready and concluded are represented as places connected to the respective transitions. After
the firing of i, the flow is divided into two parallel paths, one indicating that the task is in
execution – i(concluded) – and another representing the interaction with the task’s
execution in the system. The task execution is modeled by means of a transition with token
reservation (represented with the letter “R”), which is a non-instantaneous transition –
tokens are removed from its input places when it fires and only some time later are added to
its output places, representing the duration of the task.

When considering two tasks related by interdependencies, it is necessary to correctly
interconnect places and transitions of both models for creating the respective coordination
mechanisms. In order to do that, it is necessary to define how to map the operators and
parameters previously defined to the PN models.

The model of the enables operator is quite simple. It is modeled by an arc from the place
representing the first operand to the transition representing the second one. For example, ia
(concluded) enables ib is represented by an arc from place ia (concluded) to transition ib. It
is also necessary to add 1 to the weight of the arc arriving at the first operand, because this
allows that place to enable both the normal flow of the task and the event given by the
second operand. To illustrate that, consider the interdependency Ta equals Tb in the passive
interpretation, i.e., ia (ready) enables ib AND ib (ready) enables ia AND fa (ready) enables fb

Figure 4: Coordination mechanisms design levels.

task sequencing
interdependencies definition

expanded tasks
coordination mechanisms

execution control

input
places i (ready) i

i (concluded)
[task in execution]

task

R

f (ready) f f (concluded)
output
places

Task

Figure 5: PN representation of an interdependent task at the coordination level.

input
places ia (ready) ia (concluded) fa (ready) fa (concluded)

output
placesia

ta

R

fa

Ta

output
placesfb (concluded)

fb (ready)

ib (concluded)

ib (ready)

input
places

fb

tb

R

ib

Tb

2

2 2

2

Figure 6: Coordination mechanism for Ta equals Tb, passive interpretation.

AND fb (ready) enables fa. The coordination mechanism for this interdependency is
illustrated in Figure 6.

The enables operator also requires a parameter when it is necessary to enable a variable
number of executions of the second task (as presented in Section 2.3). In this case, instead
of adding 1 to the weight of the arc arriving at the first operand, it should be added the
number given by the parameter. If that number is infinite, it is necessary to include a return

arc from the transition representing the second operand to the place representing the first
operand.

The forces operator requires an additional transition in the coordination mechanism. If
the forced event is ready, then forces functions exactly like enables. However, if the forced
event is not ready, it is necessary to include an alternative transition connecting the forcing
state (first operand) to the output places of the second operand, indicating, in the PN model,
that it has been forced to happen. Figure 7 illustrates the interdependency Ta meets Tb in
the active situation when Ta is the master, given by fa (concluded) forces ib. In this
mechanism, similar to that of enables, there is an arc from fa (concluded) to ib and an
additional weight on the arc arriving at fa (concluded). Additionally, the alternative
transition appears between fa (concluded) and the output places of ib. The alternative
transition must have lower priority than the others in order to avoid that it be fired when the
forced event is ready.

In certain situations, it is necessary to include a delay parameter in the forces operator
(Section 2.2). In these cases, it is possible to use timed transitions, which are fired only a
determined time after enabled.

The blocks operator is constructed exactly like enables, but using an inhibitor arc instead
of a normal one. In this case, the block is permanent, because the extra token added to the
blocking place is not removed. The unblocks operator is modeled by a transition that
removes that extra token.

Regarding resource management interdependencies, it is necessary to include a place
whose tokens indicate the available resources. For example, Figure 8 represents the
situation where two tasks share a single resource, represented as a token in place R. The
start of each task depends on the availability of that resource. The end of the task releases
the resource, if it is not volatile.

3.3 Example

In order to get a general idea of the deployment of the proposed coordination model, a
collaborative authoring activity is going to be modeled. Suppose that in this scenario there
are two participants, the author (user A) and the reviewer (user B). The revision process
should start after the beginning of the writing and may occur partially in parallel with it.
Moreover, user B may alter the document to make corrections during the revision, but this
may not conflict with the writing task of user A.

The workflow level of the coordination model (see Figure 4) is directly obtained from
the collaborative activity description. At this level, it is necessary to describe each
participant’s tasks and the interdependencies between them. In the scenario described, user
A has the task of writing the document (writeA). User B has two tasks, the revision
(reviewB) and the alterations (alterB). The interdependencies between these tasks are:

writeA overlaps reviewB
alterB during reviewB
writeA and alterB sharing 1

The third interdependency above guarantees that the document will not be edited
simultaneously by both users.

In order to pass to the coordination level, it is initially necessary to choose which
interpretations of the interdependencies are more appropriate in this situation. For the
overlaps interdependency, it is not necessary that the writing task forces the revision,
although it may not finish before starting the revision. In this situation, the passive

input
places ia (ready) ia (concluded) fa (ready) fa (concluded)

output
placesia

ta

R

fa

Ta

output
placesfb (concluded)

fb (ready)

ib (concluded)

ib (ready)

input
places

fb

tb

R

ib

Tb

alternative
transition

2

Figure 7: Coordination mechanism for Ta meets Tb, active interpretation – Ta master.

input
places ia (ready) ia (conc luded) fa (ready) fa (conc luded)

output
places

output
placesfb (conc luded)

fb (ready)

ib (conc luded)

ib (ready)

input
places

ia

ta

R

fa

fb

tb

R

ib

Ta

Tb

R

Figure 8: Coordination mechanism for two tasks sharing a single resource.

interpretation is adequate: iwriteA (concluded) enables ireviewB AND ireviewB (concluded)
enables fwriteA AND fwriteA (concluded) enables freviewB.

For the during interdependency, in this case, it is enough to say that ireviewB (concluded)
enables ialterB AND freviewB (concluded) blocks ialterB.

The definitions above allow the construction of the PN-based coordination mechanisms
for this example (shown in Figure 9). This kind of model, in more complex scenarios, may
be very important to detect unexpected situations in the collaborative activity. Furthermore,
it could constitute the basis for the development of coordination mechanisms at the

input
places

i_w riteA
(ready)

i_w riteA
(concluded)

f_w riteA
(ready)

f_w riteA
(concluded)

output
places

output
places

f_alterB
(concluded)

f_alterB
(ready)

i_alterB
(concluded)

i_alterB
(ready)

input
places

R

input
places

i_review B
(ready)

i_review B
(concluded)

f_review B
(ready)

f_review B
(concluded)

output
places

i_w riteA

w riteA

R

f_w riteA

f_alterB

alterB

R

i_alterB

i_review B

review B

R

f_review B

2

2

3

2

writeA

alterB

reviewB

Figure 9: PN coordination mechanism for the collaborative authoring example.

specification level, which interacts directly with the “real tasks” in the system. An
implementation of coordination mechanisms at this level using software components that
follows a PN model was presented elsewhere [15].

4. Related Work

In order to give support to tightly integrated collaborative activities, many coordination
mechanisms have been proposed in the context of some collaborative systems. The first
generation of coordination models, proposed in the mid-1980s, was restricted to specific
scenarios, with rigidly defined protocols (e.g., [16], [17]). Eventually, there would be
situations not predicted by the specified protocols, restraining the application of the defined
mechanisms. Therefore, more recent models strive for flexibility, with coordination
mechanisms that can be adapted for each application needs. The so-called second
generation of coordination models looks for the development of systems with at least one of
the following three characteristics, which are accessibility, interoperability, and flexibility.

Accessibility is related to exposing the coordination mechanisms to system users rather
than having them deeply embedded in the system implementation. In this case, users may
be either system designers or end users. Examples of such a line of development include the
Oval tool [18] and the ABACO/Ariadne [19].

Interoperability is an essential concept in the field of information systems integration,
spanning from infrastructure services to business processes [20]. Originally concerned with
the distributed and heterogeneous nature of modern systems, interoperability brings new
concerns to coordination. Besides the obvious need to control activities defined within a

group (or intra-group coordination), the need for inter-group coordination may arise, a
problem similar in nature to the integration of inter-organizational processes.
Interoperability has been the focus of systems such as Reconciler [7], which aims to
manage groups at the semantic level through the conciliation of conflicts.

Flexibility focuses on the possibility of dynamically allowing redefinition and temporary
modifications in the coordination scheme. An example of a system that incorporates the
notion of flexible coordination mechanisms is Intermezzo [21]. In this system, data objects
with controlled access are assigned to groups of users with a certain role, and these roles
may change during the collaboration.

The coordination model presented in this work may be fitted within the second
generation because it offers a degree of flexibility through separation of tasks and
interdependencies (facilitating the changes of coordination policies) and is adequate for
dealing with some interoperability aspects. This is so in the sense that the interdependencies
are generic (i.e., may be applied to a wide range of collaborative applications) and the
implementation of coordination mechanisms may be realized by any tool. Although the use
of PN-based coordination mechanisms has been stressed, the model clearly separates
interdependencies from their coordination mechanisms, enabling the use of different
implementation tools for the coordination mechanisms. Regarding accessibility, the
proposed model exposes the coordination mechanisms to system designers, but not to the
users.

The idea of creating a set of task interdependencies and respective coordination
mechanisms was proposed in the coordination theory of T. Malone and K. Crowston. They
defined three types of elementary resource-based dependencies (flow, fit and sharing) and
worked with the hypothesis that all other dependencies could be defined as combinations or
specializations of these basic types [22]. The coordination theory was the inspiration of the
genres coordination proposal, which stresses the coordination in relation to resources, place
and time [23]. Another work that should be mentioned uses the interdependencies among
activities to workflow management [24]. In this case, interdependencies are defined as
“constraints on the occurrence and temporal order of events”, and are controlled by
coordination mechanisms defined as finite state automata, which guarantee that they are not
violated. Some of these ideas originated the work presented here, which is refined by
defining a larger set of basic interdependencies and modeling their respective coordination
mechanisms.

5. Conclusion

The necessity of coordination mechanisms to regulate interactions in collaborative systems
has been the center of a heated discussion (e.g., [25], [26]). In spite of that, there is a recent
trend to conciliate these ideas, trying to bridge the gap between coordination approaches for
loosely and tightly integrated collaborative activities, arguing that both approaches are
“seamlessly meshed and blended in the course of real world cooperative activities” [27]. In
this context, this paper introduced an approach for the coordination of tightly integrated
collaborative activities.

In the proposed approach, a basic set of interdependencies was defined to encompass a
large number of situations, including both temporal and resource management
dependencies. The mapping from these interdependencies to PN-based coordination
mechanisms was also shown. By means of the PN model, the collaborative environment
may be simulated and analyzed, enabling the anticipation of possible problems. Moreover,
considering that tightly coupled collaborative activities may be decomposed into a set of

interdependent tasks, such coordination mechanisms provide a framework for the design of
collaborative systems.

A continuation of this work is the further development of software components to
implement the coordination mechanisms – an initial approach has been shown elsewhere
[15]. The component model will standardize an event-based interaction between tasks and
associated coordination mechanisms in an implementation independent manner.

Another possibility to be explored is the use of fuzzy coordination mechanisms, which
may bring a higher degree of flexibility and manageability to collaborative systems.
Conventional temporal interdependencies do not accept scenarios such as starting a task
execution when another one is “almost finishing,” because tasks may only be synchronized
by their starting or finishing instants. Such modeling imprecision is important because it
offers application designers a higher degree of flexibility to focus on their customized
version of the interdependency in a manner more closely related to subjective human
reasoning. The fuzzy sets theory offers adequate resources to implement coordination
mechanisms with such degree of imprecision [28].

Acknowledgements. Part of this work was realized while the first author was sponsored by FAPESP
(Foundation for Research Support of the State of São Paulo), working as a post-doctoral fellow at the Dept. of
Computer Engineering and Industrial Automation, School of Electrical and Computer Engineering, State
University of Campinas, Brazil. The second author has a researcher productivity allowance from CNPq
(Brazilian National Research Council), grant n. 524557/96-9. Thanks also to Profs. Léo Magalhães and Ivan
Ricarte for their helpful insights.

References

[1] Schrage, M. (1995): No more Teams! Mastering the Dynamics of Creative Collaboration. New York:
Currency Doubleday

[2] Ellis, C. A., S. J. Gibbs and G. L. Rein (1991): Groupware: Some Issues and Experiences.
Communications of the ACM, vol. 34, no. 1, pp. 38-58

[3] Fuks, H., C. Laufer, R. Cohen and M. Blois (1999): Communication, Coordination and Cooperation in
Distance Education. In AMCIS'99. Proceedings of V Americas Conference on Information Systems,
Milwaukee, USA, August 13-15, 1999. Association for Information Systems (AIS), pp. 130-132

[4] Schmidt, K. and L. J. Bannon (1992): Taking CSCW Seriously – Supporting Articulation Work. Computer
Supported Cooperative Work (CSCW) – An International Journal, vol. 1, nos. 1-2, pp. 7-40

[5] Malone, T. W. and K. Crowston (1990): What is Coordination Theory and How Can It Help Design
Cooperative Work Systems? In CSCW’90. Proceedings of the Conference on Computer Supported
Cooperative Work, Los Angeles, USA, October 7-10, 1990. New York: ACM Press, pp. 357-370

[6] Malone, T. W. and K. Crowston (1994): The Interdisciplinary Study of Coordination. ACM Computing
Surveys, vol. 26, no. 1, pp. 87-119

[7] Simone, C., G. Mark and D. Giubbilei (1999): Interoperability as a Means of Articulation Work. In
WACC’99. Proceedings of the International Joint Conference on Work Activities Coordination and
Collaboration, San Francisco, California, February 22-25, 1999. New York: ACM Press, pp. 39-48

[8] Allen, J. F. (1984): Towards a General Theory of Action and Time. Artificial Intelligence, vol. 23, pp.
123-154

[9] Allen, J. F. (1983): Maintaining Knowledge about Temporal Intervals. Communications of the ACM, vol.
26, no. 11, pp. 832-843

[10] Duda, A. and C. Keramane (1995): Structured Temporal Composition of Multimedia Data. In IW-
MMDBMS. Proceedings of the International Workshop on Multi-Media Database Management Systems, Blue
Mountain Lake, USA, August 28-30, 1995. Los Alamitos, CA: IEEE Computer Society Press, pp. 136-142

[11] Ellis, C. A. and J. Wainer (1994): A Conceptual Model of Groupware. In CSCW’94. Proceedings of the
Conference on Computer Supported Cooperative Work, Chapel Hill, USA, October 22-26, 1994. New York:
ACM Press, pp. 79-88

[12] Raposo, A. B., L. P. Magalhães and I. L. M. Ricarte (2000): Petri Nets Based Coordination Mechanisms
for Multi-Workflow Environments. International Journal of Computer Systems Science & Engineering, vol.
15, no. 5, pp. 315-326

[13] Petri, C. A. (1962): Kommunikation mit Automaten. Schriften des IIM Nr. 3. Bonn: Institute für
Instrumentelle Mathematik

[14] Murata, T. (1989): Petri Nets: Properties, Analysis and Applications. Proceedings of the IEEE , vol. 77,
no. 4, pp. 541–580

[15] Raposo, A. B., A. J. A. da Cruz, C. M. Adriano and L. P. Magalhães (2001a): Coordination Components
for Collaborative Virtual Environments. Computers & Graphics, vol. 25, no. 6, pp. 1025-1039

[16] Flores, F., M. Graves, B. Hartfield and T. Winograd (1988): Computer Systems and the Design of
Organizational Interaction. ACM Transactions on Office Information Systems, vol. 6, no. 2, pp. 153-172

[17] Laufer, C. C. and H. Fuks (1995): ACCORD: Conversation Cliches for Cooperation. In COOP’95.
Proceedings of the First International Workshop on the Design of Cooperative Systems, Antibes-Juan-les-
Pins, France, January 25-27, 1995. Rocquencourt: INRIA Press, pp. 351-369

[18] Malone, T. W., K.-W. Lai and C. Fry (1995): Experiments with Oval: A Radically Tailorable Tool for
Cooperative Work. ACM Transactions on Information Systems, vol. 13, no. 2, pp. 177-205

[19] Schmidt, K. and C. Simone (1996): Coordination mechanisms: Towards a conceptual foundation of
CSCW systems design. Computer Supported Cooperative Work (CSCW) – The Journal of Collaborative
Computing, vol. 5, nos. 2-3, pp. 155-200

[20] Hasselbring W. (2000): Information System Integration. Communications of the ACM, vol. 43, no. 6, pp.
33-38

[21] Edwards, W. K. (1996): Policies and Roles in Collaborative Applications. In CSCW’96. Proceedings of
the Conference on Computer Supported Cooperative Work, Boston, USA, November 16-20, 1996. New York:
ACM Press, pp. 11-20

[22] Malone, T. W. et al. (1999): Tools for inventing organizations: Toward a handbook of organizational
process. Management Science, vol. 45, pp. 425-443.

[23] Yoshioka, T. and G. Herman (2000). Coordinating Information Using Genres. Center for Coordination
Science, Sloan School of Management, MIT, Working Paper CCS WP#214.

[24] Attie, P. C., M. P. Singh, E. Emerson, A. Sheth and M. Rusinkiewicz (1996): Scheduling workflows by
enforcing intertask dependencies. Distributed Systems Engineering Journal, vol. 3, no. 4, pp. 222-238.

[25] Suchman, L. A. (1994): Do Categories Have Politics? Computer Supported Cooperative Work (CSCW) –
An International Journal, vol. 2, no. 3, pp. 177-190

[26] Winograd, T. (1994): Categories, Disciplines, and Social Coordination. Computer Supported
Cooperative Work (CSCW) – An International Journal, vol. 2, no. 3, pp. 191-197

[27] Schmidt, K. and C. Simone (2000): Mind the gap! Towards a unified view of CSCW. In COOP 2000.
Proceedings of the 4th International Conference on the Design of Cooperative Systems, Sophia Antipolis,
France, May 23-26, 2000

[28] Raposo, A. B., A. L. V. Coelho, L. P. Magalhães and I. L. M. Ricarte (2001b): Using Fuzzy Petri Nets to
Coordinate Collaborative Activities. In: Proceedings of the Joint 9th IFSA (International Fuzzy Systems
Association) World Congress and 20th NAFIPS (North American Fuzzy Information Processing Society)
International Conference, Vancouver, Canada, July 25-28, 2001. Piscataway, NJ: IEEE, pp. 1494-1499

