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part of the articulation work because it represents the dynamic aspect of articulation, 
demanding renegotiation almost continuously during a collaborative effort. 

Coordination, in its broad definition, is essential to any kind of collaboration. In spite of 
that, in its narrowest definition, coordination does not need to appear explicitly in some 
kinds of collaborative activities – called loosely integrated collaborative activities – such as 
those realized by means of chats or audio/videoconferences. These activities are deeply 
associated with social relations and generally are well coordinated by the valid “social 
protocol,” which is characterized by the absence of any explicit coordination mechanism 
among the activities, trusting users’ abilities to mediate interactions (the coordination is 
culturally established and strongly dependent on mutual awareness). 

On the other hand, there is a large group of activities (tightly integrated collaborative 
activities) that require sophisticated coordination mechanisms in order to be efficiently 
supported by computer systems. In this kind of activity, tasks depend on one another to 
start, to be performed, and/or to end. Examples of tightly integrated activities may be found 
in workflow procedures, learningware, collaborative authoring, multi-user computer games, 
among others. 

In this context, this paper introduces a model for the definition of generic 
interdependencies that occur between tasks in tightly integrated collaborative activities and 
proposes Petri Net-based coordination mechanisms to handle such interdependencies. The 
coordination model encompasses temporal and resource-related interdependencies, which 
have a direct mapping to the Petri Net-based coordination mechanisms.  

In the sequence, several aspects related to tasks interdependencies are discussed. Section 
3 introduces the coordination mechanisms for those interdependencies, also showing some 
examples of use. Then, in Section 4, a brief comparison with related work is presented. 
Finally there are conclusions and suggestions for future research. 

 
 

2. The Coordination Model: Task Interdependencies 
 
In the context of this work, a collaborative activity is defined as a coordinated set of tasks 
realized by multiple actors in order to achieve a common goal. Thus, a task, either atomic 
or expressed as a group of subtasks, is one of the building blocks of any collaborative 
activity. A group of subtasks could be considered to be a task when it presents no external 
interdependencies, that is, no interdependencies with another task that does not belong to 
the group. This definition of task enables the modeling of collaborative activities using 
several abstraction levels (see Figure 1), which facilitates the coordination specification and 
management. 

Interdependency is a key concept in the coordination theory – if there are no 
dependencies between tasks to be performed in a collaborative effort, there is nothing to 
coordinate [6]. The approach task/interdependency or, more specifically, the clear 
separation between “articulation work, i.e., the work devoted to activity coordination and 
coordinated work, i.e., the work devoted to their articulated execution in the target domain” 
[7] is a step toward giving flexibility to coordination mechanisms, which is crucial to 
further use of this kind of mechanism. 

One of the advantages of the separation task/interdependency is the possibility of 
altering coordination policies by simply altering the coordination mechanisms for the 
interdependencies, without the necessity of altering the core of the collaborative system. 
Additionally, interdependencies and their coordination mechanisms may be reused. It is 
possible to characterize different kinds of interdependencies and identify the coordination 
mechanisms to manage them, creating a set of interdependencies and respective 
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Figure 1: Hierarchical model of tasks and collaborative activities. 

coordination mechanisms capable of encompassing a wide range of collaborative 
applications [6]. 

In this section, a generic set of interdependencies that occur between tasks in 
collaborative activities is defined. Then, in Section 3, coordination mechanisms to control 
those dependencies are proposed. 

 
 

2.1 Basic Temporal Interdependencies 
 

Temporal interdependencies establish the relative order of execution between a pair of 
tasks. The set of temporal interdependencies of the proposed model is based on temporal 
relations defined by J. F. Allen [8]. He proved that there is a set of primitive and mutually 
exclusive relations that could be applied over time intervals (i.e., any pair of time intervals 
are necessarily related by one and only one of Allen’s relations). 

A time interval is characterized by two events, which in turn are associated to time 
instants.  The first event is the starting (initial) time of an interval A, denoted here ia. The 
other event is the ending (final) time of the same interval, denoted  fa, always with ia < fa. 
According to Allen, the set of seven primitive relations shown in Figure 2 may maintain 
temporal information considering any pair of time intervals A and B (if one considers the 
inverse relations, then 13 relations can be defined,  because the inverse of equals is the 
equals relation itself). 

Based on the relations of Figure 2, a set of axioms is defined to create a temporal logic. 
For example, there are axioms to prove the mutual exclusion and the exhaustivity of the 
basic relations and others to define transitivity relations, e.g., if A during B and B before C, 
then it is inferred that A before C [9]. 

The fact of being applied over time intervals (and not over time instants) made the above 
relations suited for task coordination purposes, because tasks are generally non-
instantaneous operations. The adaptation of Allen's primitives to the context of 
collaborative activities takes into account that any task T will take some time (from i to f) to 
be performed.  

Nevertheless, Allen’s temporal logic is defined in a context where it is essential to have 
properties such as the definition of a minimal set of basic relations, the mutual exclusion 
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Figure 2: Allen’s primitive relations between time intervals A and B. 
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among these relations and the possibility to make inferences over them. Temporal 
interdependencies between collaborative tasks, on the other hand, are inserted in a different 
context. What really matters here is the management of the interdependencies and the 
proper understanding by groupware designers.     

Another drawback of Allen’s relation is that they are merely descriptive, not expressing 
causal or functional relations between intervals [10]. For example, if tasks A and B are 
related by the equals temporal interdependency, what should the coordination mechanism 
do when task A is ready to begin, but not task B? Should it block the execution of task A 
until task B is ready, or should it force the start of task B to guarantee that the 
interdependency will be respected? In a different situation, if it is said that task A occurs 
before task B, what should be done when task B is ready but not task A? Should the 
coordination mechanism block task B until the end of task A, or should it allow the 
execution of task B, blocking future executions of task A (which would violate the 
relation)? 

For all of these reasons, it was necessary to make some adaptations to Allen’s basic 
relations. More than answering questions such as the ones stated above, the goal of the 
proposed extensions is to offer a larger set of possibilities to create coordination 
mechanisms that could handle many different situations. The idea is to accept Allen’s seven 
primitives as the basic interdependencies and to provide a list of extensions, which may be 
viewed as specializations of them. 

   
 

2.2 Active and Passive Interdependencies 
 

The merely descriptive characteristic of Allen’s temporal relations allows for different 
interpretations of a single interdependency. Consider, for instance, that two tasks, Ta and 
Tb are related by the interdependency Ta equals Tb. This construct establishes that the two 
specified tasks must be executed simultaneously. In the coordination context, this can be 
interpreted in two different ways. In the first sense, denoted as the active interpretation, this 
relation expresses that the beginning of one task should start another task; similarly, the end 
of one of the tasks should conclude the other task. Consider a situation in which one task is 
“to start a discussion session” and the other task is “to record an ongoing discussion 
session.” From the coordination point of view, this “active equals” relationship between 
these two tasks would simply indicate that the second task (record the session) should 
follow the execution of the first task. However, a problem to proceed with the session 
recording would not invalidate the discussion session itself. 

The second possible interpretation for any coordination mechanism is denoted as the 
passive interpretation. In this case, the coordination mechanism expresses a set of 



conditions that should be obeyed in order to carry out the activity. Considering the same 
example as above, this would be the case whenever the session recording must be ready 
before the start of the discussion. Thus, a problem to record the session would delay the 
beginning of the discussion session until the problem is solved. 

In order to deal both with active and passive interpretations, two operators were defined: 
enables and forces. The enables operator represents the passive interpretation, while forces 
represents the active one. These operations may be applied on the initial and final instants 
of each interdependent task. Additionally, these extreme points have two states, ready and 
concluded, indicating, respectively, that the task is ready to start (or finish) and that it has 
already started (or finished). These states are used in the first operand, indicating that it will 
enable or force the second operand before (ready) or after (concluded) its own execution.  

Consider, for example, two tasks Ta and Tb, with initial and final points ia, ib, fa and fb. 
The interdependency Ta equals Tb may be extended into several interpretations. 

For the simultaneous beginning: 

ia (ready) enables ib AND ib (ready) enables ia – this statement indicates the passive 
situation, in which the tasks will start their execution only when both are ready (i.e., 
Tb will be enabled to start only when Ta is ready to start, and vice-versa), but neither 
will force the execution of the other. 

ia (ready) forces ib – in this situation, when Ta is ready to begin, Tb is forced to start, 
indicating a master/slave active interdependency (similarly, Tb could be considered 
the master if ib (ready) forces ia).  

ia (ready) forces ib AND ib (ready) forces ia – active interdependency with no master 
(the beginning of each task will force the beginning of the other). 

ia (ready) forces ib AND ib (ready) enables ia – Ta is the master, forcing the beginning 
of Tb, but Ta will only be started when Tb is ready (returning to the discussion session 
example, this situation indicates that the beginning of the section – Ta – would force 
the recording task, but if there is a problem with the recorder, the session will not 
start).   

Similar interpretations are applied to the simultaneous end of both tasks: 

fa (ready) enables fb AND fb (ready) enables fa – passive situation. Tasks will finish their 
execution only when both are ready to finish, but neither will force the end of the 
other. 

fa (ready) forces fb – when Ta is ready to finish, Tb is also forced to finish 
(master/slave).  

fa (ready) forces fb AND fb (ready) forces fa – active interdependency with no master. 
fa (ready) forces fb AND fb (ready) enables fa – Ta is the master, but has to wait until Tb 

is ready to finish. 

Thus, interdependency Ta equals Tb may be composed of any combination of the above 
simultaneous beginning and end situations (for example, it could have a master/slave 
beginning and a passive end). 

The interdependency Ta starts Tb has the same interpretations than equals for the 
simultaneous beginning of both tasks. Regarding the end of the tasks, the original relation 
imposes that Ta finishes before Tb, which is represented by fa (concluded) enables fb (the 
end of Tb will be enabled only after the end of Ta, as indicated by the concluded state of fa). 
However, it is not always interesting to impose any restriction to the end of tasks that have 
started together. In this case, it is possible to relax the original relation simply not including 
any relation for the ends of the tasks. 

For the simultaneous end of the tasks, interdependency Ta finishes Tb has the same 
interpretations as equals. For the beginning of the tasks, it is necessary to impose at least 



the following restrictions, ia (concluded) enables fb AND ib (concluded) enables fa. These 
restrictions are necessary to guarantee that a task will only be ready to finish when the other 
has already started (otherwise, in the active interpretation, a task could force the end of a 
task that has not started). This situation does not make any assumption about which task 
will start before (relaxing Allen’s original relation). To follow the restriction of the original 
relation, imposing that Ta starts after Tb, it is necessary to add the statement ib (concluded) 
enables ia.     

The interdependency Ta meets Tb may have the following interpretations: 

ib (ready) enables fa  AND fa (concluded) forces ib – passive situation. Ta will only be 
able to finish when Tb is ready to start, and the end of Ta forces the beginning of Tb, 
in order to respect the interdependency. 

fa (concluded) forces ib – active situation where Ta is the master. The difference with the 
previous situation is that the end of Ta does not have to wait until Tb is ready to 
begin. 

ib (ready) forces fa – active situation where Tb is the master. When it is ready to begin, 
Ta is forced to finish. 

fa (concluded) forces ib AND ib (ready) forces fa – active situation with no specific 
master. 

The interdependency Ta overlaps Tb has the following statement for its passive 
interpretation, ia (concluded) enables ib AND ib (concluded) enables fa AND fa (concluded) 
enables fb. It is possible to relax the original relation removing, for example, the last part of 
the previous statement (in this case, it would not matter which task finishes first). An active 
interpretation of this interdependency could be fa (ready) forces ib, indicating that Tb will be 
forced to start when Ta wants to finish.   

Ta during Tb may have the following interpretations: 

ib (concluded) enables ia AND fa (concluded) enables fb – passive situation.  
fb (ready) forces ia AND fa (concluded) enables fb – in this case, Tb is the master, forcing 

the execution of Ta before the master’s end. 
ia (ready) forces ib AND ib (concluded) enables ia AND fa (concluded) enables fb – Ta is 

the master, forcing the start of Tb when the master is ready to execute. 

Finally, Ta before Tb allows for a single passive interpretation, fa (concluded) enables  ib. 
An active interpretation is not possible considering just the initial and final instants of both 
tasks, because that interdependency imposes an interval between both tasks (otherwise, it 
becomes the meets interdependency). The way to create an active interpretation for this 
interdependency is by defining a delay parameter for the forces operator, such as in the 
statement fa (concluded) forces[5s] ib, indicating that Tb will be forced to start 5 seconds 
after Ta. 

The interpretations presented in this section do not claim to be exhaustive, but show the 
large number of possibilities that arise when considering the passive and active 
interpretations of temporal interdependencies.   

 
 

2.3 Interdependencies Allowing a Variable Number of Executions  
 
In spite of the operators enables and forces created to adapt Allen’s relations for active and 
passive coordination interpretations, there are undefined situations remaining. Such a 
situation occurs, for example, in Ta before Tb. After Ta and Tb have been finished, how 
should the coordination mechanism proceed if Tb wants to start again? Should it allows its 
execution, since Ta has already been executed (one to many relationship), or should it 
makes Tb wait until Ta is executed again (one to one relationship)? A similar doubt arises 



for Ta during Tb, i.e., how many times Ta is allowed to execute during a single execution 
of Tb? 

In order to deal with such situations, it was necessary to include an optional parameter 
for the enables operator. This parameter indicates the number of times a condition (first 
operand) enables the event (second operand).  

For example, to define that Ta during Tb allows the maximum of two executions of Ta 
for each execution of Tb, the following statements are used ib (concluded) enables[2] ia 
AND fa (concluded) enables fb. A similar situation occurs for Ta before Tb, as illustrated by 
the statement fa (concluded) enables[3] ib, indicating that, after each execution of Ta, Tb is 
allowed to execute up to three times. It is also possible to define that there is no restriction 
on the number of times a task may be executed after or during another (equivalent to define 
the parameter as infinite). 
 
 
2.4 Blocking Interdependencies 

 
In order to enhance the flexibility of the model, it is also necessary to create the blocks and 
unblocks operators that, respectively disable and re-enable the execution of an event 
(second operand) when the state of the first operand is reached. The use of these operators, 
for example, allows for a new interpretation of Ta before Tb:  

ib (concluded) blocks ia – in this case, there is a restriction in the execution of Ta, which 
may not be executed anymore if Tb has already started its execution. There is no 
restriction on the execution of Tb (Tb does not have to wait for the execution of Ta, as 
would happen with the situation given by fa (concluded) enables  ib).  

The blocking situations should be carefully used, since they could create deadlocks.   
 

 
2.5 Resource Management Interdependencies 

 
According to the coordination model by Ellis and Wainer [11], there are two levels of 
coordination, one related to the activity level (temporal – the sequencing of tasks that make 
up an activity) and the other related to object level (resource – “how the system deals with 
multiple participants’ sequential or simultaneous access to some set of objects”). 

Resource-related interdependencies may be represented by combinations of temporal 
relations. For example, if two tasks, Ta and Tb, may not use the same resource 
simultaneously, it is possible to define a “not parallel” dependency as the following 
statement, ia (ready) blocks ib AND fa (concluded) unblocks ib AND ib (ready) blocks ia AND 
fb (concluded) unblocks ia. However, besides being prone to deadlocks, this possibility 
ignores the notion of resource, which is quite important in the context of collaborative 
activities. Therefore, it is not sufficient to treat the problem of task interdependencies as a 
temporal logic problem. Moreover, considering resource management dependencies 
independently of temporal ones, a more flexible model is created, allowing the designer to 
deal with each kind of dependency separately. 

Resource management interdependencies in the proposed model are complementary to 
temporal ones and may be used in parallel to them. This kind of interdependency deals with 
the distribution of resources among the tasks. Three basic resource management 
dependencies were defined elsewhere [12]. 

Sharing – a limited number of resources must be shared among several tasks.  
Simultaneity – a resource is available only if a certain number of tasks request it 

simultaneously. It represents, for instance, a machine that may only be used with more 



than one operator. 
Volatility – indicates whether, after the use, the resource is available again. For 

example, a printer is a non-volatile resource, while a sheet of paper is volatile. 

Each of the above interdependencies requires parameters indicating the number of 
resources to be shared, the number of tasks that must request a resource simultaneously 
and/or the number of times a resource may be used (volatility).       

 
 
3. Coordination Mechanisms 
 
Some conclusions that can be drawn from what has been presented in the previous section 
are i) a simple group of seven temporal relations is exploded into numerous coordination 
situations that should be correctly treated by the coordination mechanisms of a 
collaborative system; ii) although encompassed by temporal interdependencies, resource 
management ones also are necessary and iii) instead of defining coordination mechanisms 
for each interpretation of interdependencies, it is necessary to propose a direct mapping to 
construct the adequate mechanisms from the directives presented in the previous section. 

In this section the last issue cited above is addressed by means of the definition of a 
model for the construction of coordination mechanisms based on Petri Nets (PNs). The 
choice for PNs as the modeling tool is justified because they are a well-established theory 
(there are numerous applications and techniques available) and can capture some of the 
main features of a collaborative environment, such as non-determinism, concurrency and 
synchronization of asynchronous processes. Moreover, PNs accommodate models at 
different abstraction levels and are amenable both to simulation and formal verification. In 
the following some PN fundamentals are briefly overviewed, then the coordination 
mechanisms are presented. 

 
 

3.1 Petri Nets Fundamentals 
 
PNs [13], [14] are a modeling tool applicable to a variety of fields and systems, specially 
suited for systems with concurrency, synchronization and event conflicts. Formally, a PN 
can be defined as a 5-tuple (P, T, F, w, M0), where: P = {P1, ..., Pm} is a finite set of places; 
T = {t1, ..., tn} is a finite set of transitions; F ⊆ (P × T) ∪ (T × P) is a set of arcs;  w: F → 
{1, 2, ...} is a weight function; M0: P → {0, 1, 2, ...} is the initial marking; with (P ∩ T) = ∅ 
and (P ∪ T) ≠ ∅. 

In a PN model, states are associated with places and tokens, and events with transitions. 
A transition t is said to be enabled if each input place Pi ∈ •t is marked with at least w(Pi , 
t), which is the weight of the arc between Pi and t. It is also possible to define inhibitor arcs 
connecting places to transitions. In this case, the transition is enabled only if the places of 
origin are empty. Once enabled, a transition will fire when its associated event occurs. 
Firing transition t, w(Pi , t) tokens are removed from each input place Pi and w(t, Po) tokens 
are added to each output place Po ∈ t•. Here, •t and t• means, respectively, the set of input 
and output places of transition t.  

A useful notation for PNs is the graphical notation (Figure 3) which is going to be used 
in the examples throughout this paper. In this notation, circles represent places, rectangles 
represent transitions, dots represent tokens and arrows represent the arcs (inhibitor arcs are 
represented with a circle on the edge), with weights above. By definition, an unlabeled arc 
has weight 1. 

In the PN of Figure 3, only transition t2 is enabled; t1 is not enabled because it would 
require two tokens in P1 to fire, since w(P1, t1) = 2; t3 is not enabled because of the 
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Figure 3: Example of the graphical notation of PNs. 

inhibitor arc from P3 (this place would have to be empty to enable t3). When t2 is fired, the 
tokens in P2 and P3 are removed and P4 receives one token. Note that the number of 
tokens in a PN is not necessarily conserved. 
 
 
3.2 Petri Nets-Based Coordination Mechanisms 

 
In the proposed scheme, the design of a collaborative environment is divided into three 
distinct hierarchical levels, workflow, coordination and execution (Figure 4). In the 
workflow level, each participant's behavior is modeled separately, establishing the 
interdependencies between tasks of the same participant or those of different ones. The 
coordination level is built under the workflow level by the expansion of interdependent 
tasks according to a PN-based model and the insertion of correspondent coordination 
mechanisms between them. The environment model is simulated and analyzed at this level. 
The execution level deals with the actual execution of tasks in the system. 

During the passage from the workflow to the coordination level, each task that has an 
interdependency with another is expanded in the subnet presented in Figure 5. In this 
model, events i and f (start and end of the task) are represented as transitions, while states 
ready and concluded are represented as places connected to the respective transitions. After 
the firing of i, the flow is divided into two parallel paths, one indicating that the task is in 
execution – i(concluded) – and another representing the interaction with the task’s 
execution in the system. The task execution is modeled by means of a transition with token 
reservation (represented with the letter “R”), which is a non-instantaneous transition – 
tokens are removed from its input places when it fires and only some time later are added to 
its output places, representing the duration of the task.    

When considering two tasks related by interdependencies, it is necessary to correctly 
interconnect places and transitions of both models for creating the respective coordination 
mechanisms. In order to do that, it is necessary to define how to map the operators and 
parameters previously defined to the PN models.  

The model of the enables operator is quite simple. It is modeled by an arc from the place 
representing the first operand to the transition representing the second one. For example, ia 
(concluded) enables ib is represented by an arc from place ia (concluded) to transition ib. It 
is also necessary to add 1 to the weight of the arc arriving at the first operand, because this 
allows that place to enable both the normal flow of the task and the event given by the 
second operand. To illustrate that, consider the interdependency Ta equals Tb in the passive 
interpretation, i.e., ia (ready) enables ib AND ib (ready) enables ia AND fa (ready) enables fb 
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AND fb (ready) enables fa. The coordination mechanism for this interdependency is 
illustrated in Figure 6.  

The enables operator also requires a parameter when it is necessary to enable a variable 
number of executions of the second task (as presented in Section 2.3). In this case, instead 
of adding 1 to the weight of the arc arriving at the first operand, it should be added the 
number given by the parameter. If that number is infinite, it is necessary to include a return 



arc from the transition representing the second operand to the place representing the first 
operand. 

The forces operator requires an additional transition in the coordination mechanism. If 
the forced event is ready, then forces functions exactly like enables. However, if the forced 
event is not ready, it is necessary to include an alternative transition connecting the forcing 
state (first operand) to the output places of the second operand, indicating, in the PN model, 
that it has been forced to happen. Figure 7 illustrates the interdependency Ta meets Tb in 
the active situation when Ta is the master, given by fa (concluded) forces ib. In this 
mechanism, similar to that of enables, there is an arc from fa (concluded) to ib and an 
additional weight on the arc arriving at fa (concluded). Additionally, the alternative 
transition appears between fa (concluded) and the output places of ib. The alternative 
transition must have lower priority than the others in order to avoid that it be fired when the 
forced event is ready. 

In certain situations, it is necessary to include a delay parameter in the forces operator 
(Section 2.2). In these cases, it is possible to use timed transitions, which are fired only a 
determined time after enabled. 

The blocks operator is constructed exactly like enables, but using an inhibitor arc instead 
of a normal one. In this case, the block is permanent, because the extra token added to the 
blocking place is not removed. The unblocks operator is modeled by a transition that 
removes that extra token. 

Regarding resource management interdependencies, it is necessary to include a place 
whose tokens indicate the available resources. For example, Figure 8 represents the 
situation where two tasks share a single resource, represented as a token in place R. The 
start of each task depends on the availability of that resource. The end of the task releases 
the resource, if it is not volatile. 

 
 

3.3 Example 
 

In order to get a general idea of the deployment of the proposed coordination model, a 
collaborative authoring activity is going to be modeled. Suppose that in this scenario there 
are two participants, the author (user A) and the reviewer (user B). The revision process 
should start after the beginning of the writing and may occur partially in parallel with it. 
Moreover, user B may alter the document to make corrections during the revision, but this 
may not conflict with the writing task of user A. 

The workflow level of the coordination model (see Figure 4) is directly obtained from 
the collaborative activity description. At this level, it is necessary to describe each 
participant’s tasks and the interdependencies between them. In the scenario described, user 
A has the task of writing the document (writeA). User B has two tasks, the revision 
(reviewB) and the alterations (alterB). The interdependencies between these tasks are: 

writeA overlaps reviewB 
alterB during reviewB 
writeA and alterB sharing 1 

The third interdependency above guarantees that the document will not be edited 
simultaneously by both users. 

In order to pass to the coordination level, it is initially necessary to choose which 
interpretations of the interdependencies are more appropriate in this situation. For the 
overlaps interdependency, it is not necessary that the writing task forces the revision, 
although it may not finish before starting the revision. In this situation, the passive 
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interpretation is adequate: iwriteA (concluded) enables ireviewB AND ireviewB (concluded) 
enables fwriteA AND fwriteA (concluded) enables freviewB. 

For the during interdependency, in this case, it is enough to say that ireviewB (concluded) 
enables ialterB AND freviewB (concluded) blocks ialterB.  

The definitions above allow the construction of the PN-based coordination mechanisms 
for this example (shown in Figure 9). This kind of model, in more complex scenarios, may 
be very important to detect unexpected situations in the collaborative activity. Furthermore, 
it could constitute the basis for the development of coordination mechanisms at the 
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specification level, which interacts directly with the “real tasks” in the system. An 
implementation of coordination mechanisms at this level using software components that 
follows a PN model was presented elsewhere [15]. 

 
 
4. Related Work 
 
In order to give support to tightly integrated collaborative activities, many coordination 
mechanisms have been proposed in the context of some collaborative systems. The first 
generation of coordination models, proposed in the mid-1980s, was restricted to specific 
scenarios, with rigidly defined protocols (e.g., [16], [17]). Eventually, there would be 
situations not predicted by the specified protocols, restraining the application of the defined 
mechanisms. Therefore, more recent models strive for flexibility, with coordination 
mechanisms that can be adapted for each application needs. The so-called second 
generation of coordination models looks for the development of systems with at least one of 
the following three characteristics, which are accessibility, interoperability, and flexibility. 

Accessibility is related to exposing the coordination mechanisms to system users rather 
than having them deeply embedded in the system implementation. In this case, users may 
be either system designers or end users. Examples of such a line of development include the 
Oval tool [18] and the ABACO/Ariadne [19]. 

Interoperability is an essential concept in the field of information systems integration, 
spanning from infrastructure services to business processes [20]. Originally concerned with 
the distributed and heterogeneous nature of modern systems, interoperability brings new 
concerns to coordination. Besides the obvious need to control activities defined within a 



group (or intra-group coordination), the need for inter-group coordination may arise, a 
problem similar in nature to the integration of inter-organizational processes. 
Interoperability has been the focus of systems such as Reconciler [7], which aims to 
manage groups at the semantic level through the conciliation of conflicts. 

Flexibility focuses on the possibility of dynamically allowing redefinition and temporary 
modifications in the coordination scheme. An example of a system that incorporates the 
notion of flexible coordination mechanisms is Intermezzo [21]. In this system, data objects 
with controlled access are assigned to groups of users with a certain role, and these roles 
may change during the collaboration. 

The coordination model presented in this work may be fitted within the second 
generation because it offers a degree of flexibility through separation of tasks and 
interdependencies (facilitating the changes of coordination policies) and is adequate for 
dealing with some interoperability aspects. This is so in the sense that the interdependencies 
are generic (i.e., may be applied to a wide range of collaborative applications) and the 
implementation of coordination mechanisms may be realized by any tool. Although the use 
of PN-based coordination mechanisms has been stressed, the model clearly separates 
interdependencies from their coordination mechanisms, enabling the use of different 
implementation tools for the coordination mechanisms. Regarding accessibility, the 
proposed model exposes the coordination mechanisms to system designers, but not to the 
users. 

The idea of creating a set of task interdependencies and respective coordination 
mechanisms was proposed in the coordination theory of T. Malone and K. Crowston. They 
defined three types of elementary resource-based dependencies (flow, fit and sharing) and 
worked with the hypothesis that all other dependencies could be defined as combinations or 
specializations of these basic types [22]. The coordination theory was the inspiration of the 
genres coordination proposal, which stresses the coordination in relation to resources, place 
and time [23]. Another work that should be mentioned uses the interdependencies among 
activities to workflow management [24]. In this case, interdependencies are defined as 
“constraints on the occurrence and temporal order of events”, and are controlled by 
coordination mechanisms defined as finite state automata, which guarantee that they are not 
violated. Some of these ideas originated the work presented here, which is refined by 
defining a larger set of basic interdependencies and modeling their respective coordination 
mechanisms. 

 
  

5. Conclusion 
 
The necessity of coordination mechanisms to regulate interactions in collaborative systems 
has been the center of a heated discussion (e.g., [25], [26]). In spite of that, there is a recent 
trend to conciliate these ideas, trying to bridge the gap between coordination approaches for 
loosely and tightly integrated collaborative activities, arguing that both approaches are 
“seamlessly meshed and blended in the course of real world cooperative activities” [27]. In 
this context, this paper introduced an approach for the coordination of tightly integrated 
collaborative activities. 

In the proposed approach, a basic set of interdependencies was defined to encompass a 
large number of situations, including both temporal and resource management 
dependencies. The mapping from these interdependencies to PN-based coordination 
mechanisms was also shown. By means of the PN model, the collaborative environment 
may be simulated and analyzed, enabling the anticipation of possible problems. Moreover, 
considering that tightly coupled collaborative activities may be decomposed into a set of 



interdependent tasks, such coordination mechanisms provide a framework for the design of 
collaborative systems. 

A continuation of this work is the further development of software components to 
implement the coordination mechanisms – an initial approach has been shown elsewhere 
[15]. The component model will standardize an event-based interaction between tasks and 
associated coordination mechanisms in an implementation independent manner. 

Another possibility to be explored is the use of fuzzy coordination mechanisms, which 
may bring a higher degree of flexibility and manageability to collaborative systems. 
Conventional temporal interdependencies do not accept scenarios such as starting a task 
execution when another one is “almost finishing,” because tasks may only be synchronized 
by their starting or finishing instants. Such modeling imprecision is important because it 
offers application designers a higher degree of flexibility to focus on their customized 
version of the interdependency in a manner more closely related to subjective human 
reasoning. The fuzzy sets theory offers adequate resources to implement coordination 
mechanisms with such degree of imprecision [28]. 
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